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Abstract. We describe the method used by the Multi-Band Template Analysis (MBTA) pipeline
to compute the probability of astrophysical origin, pastro, of compact binary coalescence candidates
in LIGO-Virgo data from the third observing run (O3). The calculation is performed as part of the
offline analysis and is used to characterize candidate events, along with their source classification. The
technical details and the implementation are described, as well as the results from the first half of
the third observing run (O3a) published in GWTC-2.1. The performance of the method is assessed
on injections of simulated gravitational-wave signals in O3a data using a parameterization of pastro
as a function of the MBTA combined ranking statistic. Possible sources of statistical and systematic
uncertainties are discussed, and their effect on pastro quantified.
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1. Introduction

As the number of gravitational-wave (GW) detections
from compact binary coalescences (CBCs) [1–3]
observed by the Advanced LIGO [4] and Advanced
Virgo [5] detectors increases, the knowledge of GW
sources population is improving [6, 7]. It allows to
compute a probability of astrophysical origin (pastro)
of GW events and jointly make a source classification
based on the the nature of the binary components [8,9].
The pastro calculation is thus a tool to reveal more
events in population-rich areas of the parameter space
in complement to the false alarm rate (FAR), which
is assigned to a candidate event on the basis of the
background behaviour estimated from the data. The
source classification is also a key ingredient to compute
merger rates of source-specific compact objects [10–
13] and to inform the population synthesis of such
systems [6, 7, 14–18]. Another purpose of the source
classification is to provide useful information on GW
sources in low-latency searches [19]. Indeed, as public
alerts are sent out to astronomers, the classification
can help them decide whether to undertake a follow-
up of the source or not. The ability to provide such
information on the nature of the binary components
in real-time will thus be of prime importance. For
instance, the number of public alerts likely to trigger a
search for electromagnetic (EM) and/or high energy
neutrinos (HEN) counterparts is expected to reach
O(1/day) in the future O4 observing run [20].

In this paper, we present the method used offline
in O3 to compute the probability of astrophysical
origin, pastro, and the source classification of CBC
search triggers with the Multi-Band Template Analysis
(MBTA) pipeline [21, 22]. MBTA is a matched-filter
based search looking first for triggers in each of the
two LIGO and Virgo detectors, then a coincidence
step is performed, followed by a FAR estimation.
The pastro values are computed as a post-processing
task. MBTA is one of the pipelines developed in the
LIGO-Virgo-KAGRA collaboration both for online and
offline CBC searches. It has been used to perform
low-latency searches for CBCs ever since the late
operation of the first generation of interferometric GW
detectors [23–27] and started reporting offline results in
O3 as part of the archival LIGO-Virgo searches [3,28].

In what follows, we provide a detailed description
of how the method developed by W. Farr, J. Gair,
I. Mandel, and C. Cutler, so-called FGMC [8], and
extended to a multi-component formalism described
in [9] has been adapted to the MBTA offline analysis
for O3, considering three types of CBC sources:
Binary Neutron Stars (BNS), Neutron Star-Black
hole (NSBH) and Binary Black Holes (BBH). The
MBTA results from GWTC-2.1 [3] are then discussed
and the performance of the method is assessed via

injections of simulated GW signals into the O3a data.
A computationally inexpensive method to estimate
pastro, which is particularly well suited for large
injection sets and for use in low-latency searches, is also
presented. Finally, we discuss uncertainties associated
with pastro that originate from various assumptions
used in the calculation.

2. Probability of astrophysical origin and
source classification

We aim at calculating the probability of astrophysical
origin of gravitational wave candidate events that come
out of a matched-filter analysis of the detector strain
data. These candidates are referred to as triggers
throughout the paper.

We define the astrophysical probability assigned to
a trigger as in [29]. It depends on the ranking statistic x
of the trigger defined in [22], which is a quantity derived
from the matched-filter signal-to-noise ratio (SNR). In
practice we use functions of x2, so that:

pastro(x
2) =

Λ1f(x2)

Λ0b(x2) + Λ1f(x2)
(1)

where Λ0 (resp. Λ1) is the expected number of
background (resp. astrophysical) triggers for a given
observing time and b(x2) = p(x2|noise) (resp.
f(x2) = p(x2|signal)) is the normalized background
(resp. astrophysical) distribution of x2.

2.1. The multi-component counts posterior

Since we do not know a priori the expected counts of
astrophysical and background triggers, they need to be
estimated from the data. We do so by using a set of
Ntrig triggers with x above a threshold xth low enough
to guarantee the sample is dominated by background
events.

Using the posterior distribution on the rates given
in the FGMC method (equation 21 of [8]), which
assumes the background and foreground triggers occur
as two independent Poisson processes, we define the
likelihood of the data given the expected astrophysical
and background counts as:

p( ~x2|Λ0,Λ1) ∝ e−Λ0−Λ1

Ntrig∏
k=1

[Λ0b(x
2
k) + Λ1f(x2

k)] (2)

where ~x2 is the list of x2 values of the Ntrig triggers
with x ≥ xth. An extension of this two-dimensional
likelihood to a multi-component likelihood described
in [9] gives:

p( ~x2|Λ0, ~Λ1) ∝ e−Λ0−Λ1

Ntrig∏
k=1

[Λ0b(x
2
k)+~Λ1 · ~f(x2

k)] (3)
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with ~Λ1={Λα} a vector of expected counts for
the three categories we consider in this pa-
per α ∈ {BNS,NSBH,BBH}, Λ1=

∑
α Λα and

~f(x2)={fα(x2)} a vector of foreground distributions
for the three types of sources. Bayes’ theorem gives
the multi-component posterior distribution of counts:

p(Λ0, ~Λ1| ~x2) ∝ π(Λ0, ~Λ1) p( ~x2|Λ0, ~Λ1) (4)

with π(Λ0, ~Λ1) the prior distribution on the back-
ground and astrophysical counts.

In practice, since we select O(104) triggers which
are background dominated, we approximate Λ0 by
Ntrig. For the astrophysical categories we choose a
uniform prior on counts for BNS and NSBH, given that
no events were detected by MBTA in these categories
during O3a [26], and a Poisson-Jeffreys prior on counts
for BBH [30].

2.2. Dividing the search parameter space

The matched filter technique performed by the MBTA
pipeline to search for GW signals uses a bank of
templates covering a redshifted component mass space
from 1 M� to 195 M� with total mass ≤ 200 M�.
Since different CBC source categories are expected
to be detected in particular areas of the parameter
space, we choose to divide the parameter space in
several parts that we call bins, to be able to track
the foreground distributions accordingly. As far as the
background distributions are concerned, the binning of
the parameter space also allows us to better monitor
the background variations.

The parameters chosen to segment the pa-
rameter space are the detector-frame chirp mass
M = (m1m2)3/5/(m1 + m2)1/5 and the mass ratio
q = m2/m1 with m1 and m2 the redshifted masses of
the binary components and m1 ≥ m2.

The “M − q” space is divided into 45 bins in
M and 4 bins in q leading to Nbins = 165 bins
containing templates, with the number of templates
per bin varying from 1 to about 23000 (median: 1075
and mean: 4412). The fine segmentation of the
parameter space in the dimension of the detected chirp
mass is motivated by the fact that it is a well measured
parameter in GW signals. On the other hand, the mass
ratio is poorly measured and only a coarse division of
the parameter space is performed. The background
and foreground estimates in the resulting bins are
described in sections 3 and 4.

2.3. Multi-detector framework

The coincident triggers of the search can occur
in different detector combinations, which results in
Ncoinc = 7 coincidence types. They are labeled as

HL, HV, LV for double coincidences during double-
detector time, HL-Von, HV-Lon, LV-Hon for double
coincidences in triple-detector time and HLV for triple
coincidences, where H, L and V stands respectively
for LIGO-Hanford, LIGO-Livingston and Virgo. Due
to the heterogeneous sensitivities of the detectors and
their orientations, the different coincidence types do
not have the same ability to capture astrophysical
signals. Thus, to account for this effect, we use weights
applied to the foreground distributions (see section
4). They are computed with injections of simulated
GW signals from table 1 performed in O3a data and
counting the fraction of recovered injections during
triple-detector time. The corresponding weights cj are
cHL−Von = 0.86, cHV−Lon = 0.01, cLV−Hon = 0.02,
cHLV = 0.11. However, the three detectors are not
always in observation mode at the same time and
double coincidences can occur when the third detector
is off. We thus construct the corresponding weights
by adding the double coincidence weights to the triple
coincidence weight. For instance, the HL weight is
computed as cHL = cHL−Von + cHLV.

2.4. pastro and classification

Taking the definition of pastro from equation 1
and marginalizing over the posterior distribution of
expected astrophysical and background counts, one
can define the probability for a trigger with combined
ranking statistic x of belonging to a source category α:

pα(x2) =

∫ ∞
0

p(Λ0, ~Λ1| ~x2)
Λαfα(x2)

Λ0b(x2) + ~Λ1 · ~f(x2)
dΛ0d~Λ1

(5)
We note that this equation depends on the type of
coincidence of the trigger and on its corresponding bin
of the parameter space.

This step in the analysis can be time consuming,
depending on the number of triggers analyzed and
the number of categories considered. We use a
Markov Chain Monte Carlo integration over the three
astrophysical counts and approximate Λ0 ∼ Ntrig.

The probability of astrophysical origin is in turn:

pastro(x
2) =

∑
α

pα(x2) (6)

By definition, the probability of a trigger to be of
background origin is p0(x2) = 1− pastro(x2).

In the next sections we describe how fα and b
depend on the bin and coincidence type.

3. Background density distributions

The background density distributions are computed for
the various types of coincidence using a similar process
to MBTA’s FAR computation [22]. It depends on
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the single-detector SNR thresholds and it is built by
making fake coincidences of all possible combinations
of single-detector triggers with identical templates from
different detectors over a period of time. This is done
by removing significant coincident GW detections from
the data.

However, the background used in pastro is different
from the background computed in the standard search
to assign a FAR value to candidate events. Indeed,
the background for pastro is computed individually for
the Nbins bins in the “M − q” space, whereas the
standard search uses a coarse division of the template
bank into three regions in the “m1 − m2” space.
Another difference is the timespan over which the
background is estimated. The standard search uses
periods of about one week over O3, whereas the pastro
calculation uses a background estimated over periods
of a few months. Moreover, since the tails of the
background distributions may be spoiled by remaining
single-detector triggers from astrophysical events, the
background for pastro only considers data when at least
the Hanford and Livingston detectors are observing
(i.e. HL+HLV time). This has the benefit of removing
most of the single detector events from the background
distributions, since the majority of the detected GW
events are of HL(-Von) type.

The background rate distributions are noted as
b̂i,j(x

2), where i and j hereafter reflect the dependence
on the bins and the coincidence types, respectively.
They satisfy the following relation:

Nbins∑
i=1

Ncoinc∑
j=1

∫ Tj

0

∫ ∞
x2
th

b̂i,j(x
2) dt dx2 = Λ0 (7)

where Tj is the observing time for coincidence type j.
The background density distribution in bin i and

for coincidence type j is thus:

bi,j(x
2) =

Tj
Λ0

b̂i,j(x
2) (8)

We note that the background rates for double
coincidences is independent of the state of the third
detector, such that, e.g., b̂i,HL(x2) = b̂i,HL−Von(x2).

4. Foreground density distributions

The foreground density distributions are estimated by
assuming that the number of sources detected above a
SNR threshold is proportional to the detection volume,
which is assumed to be constant over the observing
run. In the current implementation, those distributions
do not depend on the specific source population [31],
and they are independent of the redshift, since most of
the binary mergers observed during O3 occured at low
redshift (z < 1). These assumptions will be revised

when the detectors sensitivity allows to reach sources
with greater luminosity distances or the population
evolution with redshift is better measured.

The ranking statistic x is defined in MBTA as the
SNR rescaled by a factor that downgrades suspected
background events (see section 4 of [22]). This
rescaling factor is usually 1 for astrophysical events and
therefore x is distributed as the SNR. This implies that
the cumulative foreground distribution F (x) above
a given threshold xth scales as x−3. It is then
straightforward to derive the normalized foreground
density distribution as a function of x2:

f̃(x2) =
3

2

(x2
th)1.5

(x2)2.5
(9)

4.1. Bin weights and population models

Since we want to describe the distribution over our bins
of the three CBC astrophysical categories, we further
consider source-specific, bin-specific foreground density
distributions:

fα,i(x
2) = wα,i f̃(x2) (10)

where wα,i represents the relative abundance of type-
α sources detected in bin i. This has been estimated
by performing injections of simulated GW signals into
LIGO-Virgo O3a data. We set by definition:

wα,i =
Nα,i∑Nbins

k=1 Nα,k
(11)

where Nα,i is the number of recovered injections of
source type α with x ≥ xth inside bin i. The
injection sets used are the same as the ones described
in GWTC-2.1 to compute the source hypervolumes
probed by the search [3]. The parameter distributions
of the injections are given in table 1.

Astrophysical population models are key ingre-
dients in pastro calculations since they are used to
build the foreground distributions. For BNS and
NSBH we use the models from the injections. For
the BBH injections, we use a population reweighting
based on recent astrophysical observations using the
Power Law + Peak model defined in Appendix B.2
of [7] and we assume a non-evolving comoving merger
rate density with redshift. The parameters used for
our fiducial BBH population are the same as the ones
used in [3]; α = 2.5, β = 1.5, mmin = 5 M�,
mmax = 80 M�, λpeak = 0.1, µm = 34 M�,
σm = 5 M�, δm = 3.5 M� and κ = 0.

The weights wα,i to construct the foreground
density distributions are then directly extracted from
the distribution of the detected injections in the “M−
q” space. The normalized distributions of detected
chirp masses for the three source categories of CBC
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Mass Mass Spin Spin Redshift Maximum
distribution range (M�) range orientations evolution redshift

BBH (inj)
p(m1) ∝ m−2.35

1 2 < m1 < 100 |χ1,2| < 0.998 isotropic κ = 1 1.9
p(m2|m1) ∝ m2 2 < m2 < 100

BBH (pop) Power Law + Peak
5 < m1 < 80 |χ1,2| < 0.998 isotropic κ = 0 1.9
5 < m2 < 80

NSBH
p(m1) ∝ m−2.35

1 2.5 < m1 < 60 |χ1| < 0.998
isotropic κ = 0 0.25

uniform 1 < m2 < 2.5 |χ2| < 0.4

BNS uniform
1 < m1 < 2.5 |χ1,2| < 0.4 isotropic κ = 0 0.15
1 < m2 < 2.5

Table 1: Parameter distributions used to generate injections of GW signals. The BBH fiducial population used
to reweight the BBH injections is also provided. The redshift evolution defines the distribution of signals over
redshift such as p(z) ∝ (1 + z)κ−1dVc/dz with Vc the comoving volume.

injections are shown in figure 1. As expected from
the assumed mass gap between the BNS and BBH
populations from 2.5 M� to 5 M�, the simulated
BNS and BBH signals are recovered in distinct bins of
the parameter space. However, the simulated NSBH
signals exhibit a significant overlap with the other two
categories.

Figure 1: Normalized distributions of the detected
chirp mass for the recovered BNS, NSBH and BBH
injections. The y-axis gives the bin weights (wα,i)
marginalized over the mass ratio.

4.2. Multi-detector weights

As stated earlier, we apply weights derived from the
cj , defined in section 2.3, on the foreground density
distributions depending on the coincidence type j of
the selected triggers.

Let’s consider Λα,i,j , the expected number of
events of category α inside a bin i for a given type
of coincidence j:

Λα,i,j = Λα wα,i wj (12)

with

wj =
Tjcj∑Ncoinc

k=1 Tkck
(13)

It satisfies:

Λα =

Nbins∑
i=1

Ncoinc∑
j=1

Λα,i,j (14)

Finally, the foreground distribution for coinci-
dence type j is expressed as:

fα,i,j(x
2) = wα,i wj f̃(x2) (15)

with the foreground distributions satisfying:

Nbins∑
i=1

Ncoinc∑
j=1

∫ ∞
x2
th

fα,i,j(x
2) dx2 = 1 (16)

In practice, for the O3 catalog papers [3,32], these
weights were not computed in this way but rather as:

wj =
cj∑Ncoinc

k=1 ck
(17)

which involves a crude approximation that the Tj were
all the same. The effect of this approximation on pastro
is discussed in section 8.

5. MBTA results in GWTC-2.1

In GWTC-2.1, the MBTA pipeline provided source
classification and probability of astrophysical origin
for candidate events using the method described in
the above sections. All the significant candidates
found are of the BBH type. In figure 2a we show
the pastro values of the MBTA O3a candidate events
with a FAR < 2/day or pastro > 0.5 as a function
of their inverse false alarm rate (IFAR). We also
draw lines corresponding to two thresholds used in
GWTC-2 [2] (IFAR = 0.5 yr) and in GWTC-2.1 [3]
(pastro = 0.5) used to report full parameter estimation
on the candidate events.
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(a) (b)

Figure 2: pastro as a function of the IFAR (a) or the detected chirp mass (b) for the O3a MBTA candidate events
with either IFAR < 0.5 day or pastro > 0.5. The dashed vertical (resp. horizontal) line shows the IFAR (resp.
pastro) value of 0.5 yr (resp. 0.5). The red dots correspond to O3a events recovered with pastro > 0.5 but with
IFAR < 0.5 yr.

The candidate events with IFAR > 0.5 yr have
pastro > 0.5 and most of the ones with IFAR < 0.5 yr
have pastro < 0.5. However, six candidate events have
an IFAR < 0.5 yr but pastro > 0.5. Several effects
explain this difference. First, given the observed BBH
rate, a pastro cut of 0.5 does not translate into a FAR
cut of 2/yr. Furthermore, the binning of the search
parameter space used for pastro plays at least two
important roles. It enables to capture the variations
of the assumed BBH population across the parameter
space, revealing candidates in population-rich areas.
Here, the foreground density distribution for BBH
signals favors high-mass systems as shown in figure 1.
Moreover, it allows to better track the background
variations across the parameter space, especially in
the high-mass region of the parameter space where the
density of templates is low. This is different from how
the current MBTA standard search computes the FAR
of triggers on only three search regions [22], which can
result in assigning a pessimistic FAR value to high-
mass triggers with low SNR. This effect can be seen
in figure 2b, where the two candidate events with the
highest FARs (IFAR < 1 week) and pastro > 0.5
occurred at high detected chirp mass (M > 40 M�).

6. pastro parameterization

The above method is well suited for offline analysis
on real data but the computational cost of the pastro
marginalization makes it difficult to use in an online
search. Moreover, when dealing with large sets of
injections, we want to be able to assign pastro values
using the observed merger rates (not counting the
injections as part of the detections). We thus extract
a simple parameterization of pastro as a function of

x2, which can be used both for injections or during
online searches. The method assumes that the number
of terrestrial and astrophysical expected counts are
known for a given observed space-time volume.

To compute pastro values as a function of x2 based
on the observations, we take the mean value of the
MBTA O3a posterior distributions of counts for the
three astrophysical categories 〈~Λ1〉 and we rewrite the
astrophysical probability for each bin i and coincidence
type j as:

pastro,i,j(x
2) =

〈~Λ1〉 · ~fi,j(x2)

Λ0bi,j(x2) + 〈~Λ1〉 · ~fi,j(x2)
(18)

Then we use the following parameterization to fit the
data:

pastro,i,j(x
2) =

[
1 + exp

(
− ai,j · (x2 − x2

50%,i,j)
)]−1

(19)
where x50%,i,j is the combined ranking statistics
at pastro,i,j = 0.5 and ai,j is the slope of the
parameterized curve at x2

50%,i,j . Figure 3 shows
examples of the pastro parameterization in one HL-Von
bin, typical case for O3a candidate events, and in one
LV-Hon bin, typical case of a noisier bin for an unlikely
type of coincidence.

One can see that another advantage of this method
is that it allows to interpolate pastro values around x50%

and thus gives a better precision, compared to using
discrete values in the region where pastro varies quickly
with x2. Also, since the background is estimated
empirically using fake coincidences of detector triggers,
the background distribution can be limited to fairly
low values of x2 inside low template density bins.
The parameterization allows to extrapolate the pastro
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trend to higher combined ranking statistic for bins
where pastro cannot formally be estimated anymore.
It also helps to smooth out statistical fluctuations of
the background that can occur in low statistics bins,
as illustrated on figure 3.

Figure 3: pastro as a function of the combined ranking
statistic squared for the HL-Von (LV-Hon) coincidence
type with chirp mass and mass ratio: 1.15 M� ≤
M < 1.23 M� and 0.50 ≤ q < 0.75 (12.13 M� ≤
M < 13.00 M� and 0 < q < 0.25). The dark
(light) blue lines are the observed data computed with
equation 18 and the red (orange) curve is the fit with
the parameterization proposed in equation 19.

To illustrate the consistency of the parameterized
pastro values with those produced by the full compu-
tation, we compare them for the O3a GW candidates
reported by MBTA in GWTC-2.1. Figure 4 shows that
they are in good agreement. The differences between
the values may arise from at least three features. The
first one is the use of the mean value of the posterior
distributions of astrophysical counts in the parameteri-
zation instead of computing marginalized pastro values
over these distributions for the full computation. The
second one is that the parameterization interpolates
pastro as a function of x2, which is interesting, espe-
cially around pastro = 0.5 where the absolute difference
between two consequent pastro values is on average 0.06
for the BBH bins. The third one is linked to the good-
ness of the fit which means that the parameterization
can give different pastro values than the full method if
it does not match exactly the data points.

To further illustrate the parameterization, we
show in figure 5 the pastro values attributed to
injections versus their IFAR. As expected, pastro ∼ 0
corresponds to low IFAR values, whereas pastro ∼ 1
corresponds to high IFAR values. However, since the
parameter space is split into 165 bins to compute
the foreground and the background distributions, we
expect several pastro trends as a function of the IFAR

Figure 4: pastro values computed using the parameter-
ization as a function of the pastro values marginalized
over the multi-component counts posterior for the O3a
MBTA candidate events. The dashed diagonal is the
first bisector.

computed over three regions of the parameter space.
The width of the pastro transition from 0 to 1 is
thus maximized in the BBH region of the parameter
space, as the foreground and background variations are
higher than for NSBH and BNS. From the background
perspective, the template bank has large variations of
density which are not precisely taken into account to
compute the IFAR, especially for high-mass sytems.
It results in a population of high-mass BBH assigned
pastro > 0.5 with IFAR ∼ 10−4 yr because the
background used for pastro is estimated with only a
few templates. This comment is similar as in the
previous analysis of candidate events from GWTC-2.1
in figure 2a where, for instance, GW190916 200658 has
an IFAR ∼ 1.4× 10−4 yr and a pastro ∼ 0.66.

During future observing runs, the parameteriza-
tion would need to be updated as the number of events
for each astrophysical category will increase and im-
prove our knowledge of CBC merger rates. For a
sufficient number of detections, the parameterization
should stabilize and the uncertainty on pastro should
decrease.

7. Classification

Using ∼40000 injections of each type of sources and the
pastro parameterization, we first assess the performance
of our source classification, by looking at the class α
with the highest pα.

In figure 6, the confusion matrix shows that the
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Figure 5: pastro as a function of the IFAR for the three types of injections in O3a data.

source classification is largely reliable for BNS and
BBH injections, whereas a significant fraction of NSBH
systems are categorized as BNS or BBH. This is

BNS NSBH BBH
Class with max p

BNS

NSBH

BBH (pop)

Ty
pe

 o
f i

nj
ec

tio
ns

99.2% 0.8% 0.0%

17.8% 72.9% 9.2%

0.0% 0.4% 99.5%

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Confusion matrix of simulated GW signals
in O3a data. The parameters used for the injections
are described in table 1.

expected due to the poor measurement of the mass
ratio q, which results in an overlap between some of
the NSBH bins and the two other categories.

In GWTC-2.1 for MBTA, as in this paper, a value
of 2.5 M� has been chosen for the NS maximum mass,
with a gap to 5 M� for BBH (but no gap for NSBH).
In figure 7, we show how sources that would be present
in this mass gap are categorized. One can notice that
none of the injections with masses below 3 M� (choice
made by other pipelines in GWTC-2.1) is classified as
BBH. Hence, our population models do not prevent
us from labeling sources with masses below 3 M� as
BNS or NSBH, with the expected benefit of providing
a cleaner source-class assessment.

8. Sensitivity of pastro to assumptions

The pastro values are subject to various types of
assumptions. In general, triggers categorized as noise

Figure 7: Confusion matrix of simulated GW signals
for sources with at least one component mass between
2.5 and 5 M� in O3a data.

(pastro ∼ 0) and candidate events identified as real GW
signals (pastro ∼ 1) are expected to be robust under
different assumptions to compute pastro. However,
candidate events with 0.1 ≤ pastro ≤ 0.9 are more
likely to fluctuate according to different choices made
to compute pastro and these fluctuations are maximized
around x50%. Possible sources of uncertainties on
pastro considered in what follows are the ranking
statistic fluctuations, the background fluctuations over
the observing time, the statistical uncertainty in
the number of expected events in the astrophysical
categories, the way the template bank is divided into
bins, or the choice of population models to build the
foreground. We study the effects of these sources
by propagating them into uncertainties on pastro by
using the parameterization in the case of HL-Von
coincidences that would be found as BBH candidates
(to be consistent with most of the MBTA detections in
GWTC-2.1). Then, we study the impact of the choice
of the BBH and BNS population models on pastro using
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injections with FAR < 1/hour. Finally, we quantify
the impact of including or not the relative time spent
into different detector network configurations in the
foreground normalization.

8.1. Impact of the combined ranking statistic
fluctuations

Regardless of the statistical uncertainty of ±1 (for
stationary noise) on the individual detector SNR, we
focus on the systematic uncertainty on x due to the
discrete nature of the template bank. Since the
latter uses a SNR minimal match of 97% [22, 33], the
expected maximum error on the SNR of an event is
∼ 3%. The related uncertainty on the SNR is taken
as 3%/

√
12 ∼ 0.9% for a uniform distribution and we

assume that the uncertainty on x is the same as the
uncertainty on the SNR around x50%.

We add fluctuations of ±0.9% on x50% in the bins
of the parameter space and compute a weighted mean
of pastro variations using the distributions of expected
BBH sources. It gives an uncertainty of ±0.08 at
pastro = 0.5.

This uncertainty could be reduced, for instance, to
±0.03 if the SNR minimal match was increased from
97% to 99%.

8.2. Impact of the background fluctuations

The pastro values are sensitive to choices in the
background estimation. In MBTA, the background for
pastro was estimated over a few months of coincident
analysis time to better sample the non-Gaussian
fluctuations and to better populate the tail of the
background distribution. In order to get a quantitative
estimate of the background fluctuations at x50% and
thus obtain the related systematic uncertainty on
pastro, we compute the distribution of background
fluctuations at 〈x50%〉 = 8.43 (weighted mean value of
x50% using the distributions of expected BBH sources)
over O3a using background estimated over periods
of about one week. The standard deviation of the
mean background value is 20%. This translates into
a systematic uncertainty of ±0.05 at pastro = 0.5.

Although this uncertainty is not the dominant
one, it would be challenging to reduce it since the
background fluctuations are driven by the state of
the detectors which is not stationary during observing
periods.

8.3. Impact of the binning of the parameter space

The division of the parameter space into bins, as
described in section 2.2, is somewhat arbitrary and
induces an uncertainty on pastro due to the discrete
nature of the grid which does not allow a perfect

tracking of the astrophysical population distributions,
nor of the background distributions. This means that
the value of pastro for candidates whose parameters are
close to bin boundaries is sensitive to changes in bin
size. We thus want to translate this sensitivity into
an uncertainty, taking HL-Von BBH as an example.
Figure 8 shows the x50% variations over the “M −
q” space for these coincidences. The estimation

Figure 8: 2D-histogram of x50% for HL-Von coinci-
dences in the “M− q” space.

is done considering the dispersion of x50% between
neighbouring bins. First, the local variations of pastro
values around a bin are weighted according to the
expected BBH population inside the different bins.
Then a weighted mean of pastro variations over the
entire parameter space is computed. The weighted
mean value is 0.23 at x50% while the median value of
the variations is 0.15. The corresponding values along
the M dimension are 0.19 for the weighted mean and
0.10 for the median; and along q, the weighted mean
is 0.20 and the median is 0.18. Overall, x50% varies
smoothly over the parameter space. However, as shown
in figure 8, there are a few high-mass bins for which the
variations increase rapidly. This results in an average
dispersion of pastro almost a factor of 2 higher than
the median dispersion considering chirp mass bins. If
one considers only mass ratio bins, the averaged and
median values are much closer, which reflects the coarse
division in that dimension. As the average dispersion
of x50% over the parameter space is skewed by a few
high-mass bins, we choose the median value of 0.15 to
estimate the systematic uncertainty at pastro ∼ 0.5.

These results show the limit of the choice of the
binning we made in some parts of the parameter space
where the width of the bins could be further tuned to
be better suited in the future.
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8.4. Impact of the expected number of astrophysical
events

The statistical uncertainty on the expected number of
astrophysical events was marginalized over the pos-
terior distribution of counts in the pastro computa-
tion for the MBTA candidate events in GWTC-2.1.
However, for the parameterization of pastro, we use
the mean values of the posterior distributions of as-
trophysical counts for the three categories. We can
thus estimate the statistical uncertainty on pastro val-
ues from the width of the distributions. Since MBTA
only found BBH candidate events during O3a with
pastro ∼ pBBH , we focus on the impact of the
BBH counts on pastro values and especially around
x50%. We consider the 68% confidence interval (CI)
of the posterior distribution of BBH counts to choose
the new values of counts and compute pastro. Let’s
call ΛmaxBBH = 38.7 (resp. ΛminBBH = 26.3) the upper
(resp. lower) bound of the 68% CI and let’s consider
pastro = pBBH . Using equation 1 to compute pastro
with the mean value of the BBH counts and p

max(min)
astro

with Λ
max(min)
BBH , one can compute a statistical uncer-

tainty of ±0.05 at pastro = 0.5.
Future observing runs with better sensitivities of

the detectors will help reducing this uncertainty as the
number of GW sources detected will increase.

8.5. Impact of population models

In this section, we focus on the impact of population
models by testing the variation in pastro induced by
different astrophysical models for BBH and BNS [7,34–
36]. This is technically performed by reweighting the
BBH and BNS injection sets with different populations
in the source frame, which only affects the foreground
distributions. We do not study the NSBH case but
the uncertainties derived for BBH and BNS can be
considered as lower bounds for the NSBH case.

The BBH case

As stated in section 4, for BBH we use the Power
Law + Peak model without any redshift evolution of
the merger rate, motivated by our current knowledge
on BBH populations from the LIGO-Virgo data [7].
An alternative model considered in [7] is the Trun-
cated model, which is a simple power-law with a
low- and a high-mass cutoffs. This is the model which
differs the most from the Power Law + Peak [7]
and it is thus a good way to assess the worst case
scenario. Following [7], we use the subsequent pa-
rameters for the Truncated model: mmin = 5 M�,
mmax = 78.5 M�, α = −2.35, β = 1 and κ = 0.

Figure 9 shows the normalized distribution of
the detected chirp mass for the BBH injections using

the fiducial Power Law + Peak model and the
Truncated models. One can see that the latter

Figure 9: Normalized distributions of the detected
chirp mass for the recovered BBH injections under two
different population models.

extends to lower chirp masses. We then compute a
new parameterization of pastro which is used on BBH
injections. In figure 10a we show a two-dimensional
histogram of pastro values computed with both models.
As expected, most of the triggers with pastro close to 0
or 1 have similar values under one model or the other.
However, for 0.1 ≤ pastro ≤ 0.9 a significant fraction
of injections encounters fluctuations in their pastro with
a discrepancy typically within ±0.1 around x50%. One
can also notice a small fraction of injections for which
pastro differs significantly (with differences up to 0.6)
from one model to the other. This difference can be
seen in figure 10b as a function of the detected chirp
mass where only injections with 0.1 ≤ pastro ≤ 0.9
have been used.

The median pastro difference of these injections
is −0.002+0.085

−0.089 with 90% CI§. The systematic
uncertainty level is thus expected to be ≤ 0.1 for most
of the pastro values between 0.1 and 0.9 but some of
the differences are much larger than the quoted CI in
specific parts of the parameter space.

The largest differences in pastro occur where the
foreground distributions of the two models differ most
significantly, i.e. at low chirp mass. Then, in the
region of chirp masses of 30 M� − 40 M� the Power
Law + Peak model gives higher pastro values than the
other model mainly due to the Gaussian peak in the
primary mass distribution. Future observations will
help reducing the systematic uncertainty coming from
the BBH population model.

§ We choose the 90% CI here to be sure to get a significant
fraction of injections with a pastro around 0.5.
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(a) (b)

Figure 10: (a) 2D-histogram of pastro values computed using the Truncated model as a function of the pastro
values computed with the Power Law + Peak model for the BBH injections with a FAR < 1/hour. The red
dashed lines serve as an example to show the effect of a constant factor 2 between the expected foreground of
the two models. (b) 2D-histogram of the difference in pastro values between the Truncated and the Power
Law + Peak models as a function of the detected chirp mass. Only BBH injections with 0.1 ≤ pastro ≤ 0.9
using either model are shown.

The BNS case

The BNS injections used in the pastro calculation
have been distributed using a uniform mass prior
which was first motivated by the poor knowledge
of the BNS population and which is also consistent
with a NS population study performed on GW events
only [34]. However, the number of NS observed in
GW events is small (two BNS [38, 39], two NSBH [28]
and one GW event with uncertain CBC category [40])
and, for instance, the Bimodal model inferred from
the galactic distribution of NS is not ruled out. Hence,
we might assume this model for the BNS population,
as described in [35, 36], to compute pastro. More
specifically, we use the the following parameters:
mmin = 1 M�, α = 0.65, β = 3, µ1 = 1.34 M�,
σ1 = 0.07 M�, µ2 = 1.80 M�, σ2 = 0.21 M� and
mmax = 2.22 M� from [37], a maximum NS mass
compatible with the galactic NS and GW events.

Figure 11 shows the normalized distribution of the
detected chirp mass for the BNS injections using the
Uniform model and the Bimodal model. The latter
favors the low chirp mass region.

As for the BBH injections, we construct a new
set of parameterized pastro curves using the Bimodal
model for BNS. Figure 12a shows the two-dimensional
histogram of BNS injections in the pastro plane for
both models. As in the case of the BBH injections,
most of the BNS injections recovered with pastro ∼ 0
or 1 are almost unsensitive to population changes.
However, for injections with 0.1 ≤ pastro ≤ 0.9
the discrepancy in pastro arising from the different
populations is significantly higher (between 0.1 and

Figure 11: Normalized distributions of the detected
chirp mass for the recovered BNS injections under two
different population models.

0.4) and grows toward pastro = 0.5. The segmentation
of the search parameter space also adds a pastro
systematic uncertainty which can be assessed by the
width of the empty regions between lines drawn by
the parameterized curves. The maximum gap in pastro
values between two parameterized curves is ∼ 0.1.
In the future, it may be worth considering reducing
the uncertainty coming from the binning of the search
parameter space by increasing the number of bins or by
interpolating the parameterized curves to get a smooth
transition from one bin to another.

To better see where most of the differences in
pastro occur in the search parameter space, we show
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(a) (b)

Figure 12: (a) 2D-histogram of pastro values computed using the Bimodal model as a function of the pastro
values computed with the Uniform model for the BNS injections with a FAR < 1/hour. The red dashed
lines serve as an example to show the effect of a constant factor 2 between the expected foreground of the two
models. (b) 2D-histogram of the difference in pastro values between the Bimodal and the Uniform models as
a function of the detected chirp mass for the BNS injections. Only BNS injections with 0.1 ≤ pastro ≤ 0.9 using
either model are shown.

them as a function of the detected chirp mass in
figure 12b, keeping only recovered injections with
0.1 ≤ pastro ≤ 0.9. As expected, the differences
follow closely the ones in the foreground distributions
of both models seen in figure 11. The median value of
these differences with 90% CI is −0.002+0.156

−0.191. We thus
expect the pastro systematic uncertainty level for BNS
candidates to be ≤ 0.2 depending on the assumed BNS
population model.

Future observations of such systems will be
essential in our understanding of their population and
they will help getting more accurate pastro values.

8.6. Impact of the foreground network normalization

In section 4 we mentioned that the foreground
weights and their normalization were computed for
the O3 catalog papers using equal detector network
configuration times. However, the time spent in triple-
detector configuration is ∼ 55% of the whole duration
and the double-detector times account for ∼ 15%
each. To quantify the effect of this approximation, we
compute pastro of O3a triggers using the normalized
weights defined in equation 13 and show the new values
versus the current ones in figure 13.

The pastro values for coincidences which occurred
during triple detector time increase, whereas the ones
during double detector times decrease. The differences
are of the same order of magnitude as the systematic
uncertainties discussed in this section, with an overall
trend to get slightly larger pastro values with the more
accurate normalization (as there is more triple-detector
time).

Figure 13: Scatter plot of the pastro values for the
O3a triggers computed with the foreground network
normalization versus the current pastro values from
GWTC-2.1. The light gray dashed lines show the
expected change in pastro for HL-Von (up) and HL
(down) coincidence types.

9. Conclusion

The method presented in this paper uses a multi-
component analysis and population models that allow
us to jointly perform a source classification and assign
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a probability of astrophysical origin to triggers [8, 9].
One of the main features of the method is the division
of the search parameter space to better capture the
assumed population models of CBC sources and the use
of a state-of the-art model for the population of BBH
sources. As a consequence, using a pastro threshold to
select candidate events is of great interest compared
to a selection on a FAR threshold since it may reveal
BBH events in population-rich areas where the current
MBTA FAR calculation is pessimistic. We have also
shown that pastro as a function of the combined ranking
statistic squared can be parameterized in a simple
manner based on the O3a data. It allows for a fast
estimation of pastro and source classification on large
sets of injections and can be adapted to the online
search for the next observing run O4 with a very low
computational cost.

The pastro calculation is subject to several
statistical and systematic uncertainties, which we have
quantified. The global systematic uncertainty on pastro
has been estimated to O(0.1) in the region where
pastro ∼ 0.5 and the largest uncertainties lie in
a few specific parts of the parameter space, where
the population models are highly uncertain. The
uncertainties are large in the region where pastro ∼
0.5 and small for confident detections (pastro close
to 1). Using a pastro threshold of 0.5 to select
candidate events is a good way to not miss the
interesting astrophysical events, at the price of a small
contamination. This is also a good choice since the
number of candidates is minimal around that value,
meaning the candidates list is rather stable against the
uncertainties.

Future observations of GW signals will allow to
refine some of the assumptions used in the pastro
computation regarding population models and the
number of expected astrophysical counts, and thus
further reduce the subsequent pastro statistical and
systematic uncertainties. Other sources of systematic
uncertainties such as the SNR fluctuations or the
binning of the parameter space can be reduced by
increasing the template density inside the template
bank and by dividing the parameter space into thinner
bins.
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