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a b s t r a c t 

A Finite-Volume based POD-Galerkin reduced order modeling strategy for steady-state 

Reynolds averaged Navier–Stokes (RANS) simulation is extended for low-Prandtl number 

flow. The reduced order model is based on a full order model for which the effects of 

buoyancy on the flow and heat transfer are characterized by varying the Richardson num- 

ber. The Reynolds stresses are computed with a linear eddy viscosity model. A single gra- 

dient diffusion hypothesis, together with a local correlation for the evaluation of the tur- 

bulent Prandtl number, is used to model the turbulent heat fluxes. The contribution of the 

eddy viscosity and turbulent thermal diffusivity fields are considered in the reduced order 

model with an interpolation based data-driven method. The reduced order model is tested 

for buoyancy-aided turbulent liquid sodium flow over a vertical backward-facing step with 

a uniform heat flux applied on the wall downstream of the step. The wall heat flux is 

incorporated with a Neumann boundary condition in both the full order model and the 

reduced order model. The velocity and temperature profiles predicted with the reduced 

order model for the same and new Richardson numbers inside the range of parameter val- 

ues are in good agreement with the RANS simulations. Also, the local Stanton number and 

skin friction distribution at the heated wall are qualitatively well captured. Finally, the re- 

duced order simulations, performed on a single core, are about 10 5 times faster than the 

RANS simulations that are performed on eight cores. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Heat transfer in liquid metals and molten salts is of interest, for instance, in nuclear facilities that use high-temperature

heat transfer media, so-called low-Prandtl (Pr) fluids, as a coolant. Due to the high thermal diffusivity of low-Pr fluids, where

Pr is the ratio of diffusivity of momentum to diffusivity of heat, the influence of buoyancy on the flow field is present

at much higher Reynolds numbers compared to air or water [1] . Therefore, the flow regime between forced and natural

convection, where driven flow interacts with buoyancy effects, needs to be studied in many heat transfer applications [2] . 
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Low-Prandtl number fluid turbulent flows, and especially their associated turbulent heat fluxes, are complicated to model

numerically as heat conduction through the boundary layer has more dominant effect with respect to convection. Therefore,

the thermal boundary layers become thicker when the Prandtl number is decreased. This means that there is a difference

in the range of the spatial (and temporal) scales of temperature and velocity. As a consequence, the conductive heat fluxes

near walls become more important. Therefore, it is problematic to apply the Reynolds analogy, which assumes a constant

turbulent Prandtl number, Pr t , close to unity, to calculate the local turbulent heat fluxes [3] . Furthermore, Pr influences

not only the temperature field and the heat flux modeling, but also the velocity field and the shear modeling in the case

of buoyancy-aided flows [4] . Therefore, heat transfer in liquid metals, compared to common fluids with a Prandtl number

around unity, requires additional or different (physical) modeling. 

Only a few numerical studies on incompressible turbulent convective buoyant flows for low-Prandtl number fluid flows

can be found in literature. Three studies are highlighted here: Cotton and Jackson [5] performed numerical calculations for

a buoyancy-aided mixed convective turbulent flow in a vertical pipe for liquid sodium (Pr = 0.005–0.01). Niemann and

Frohlich [2] investigated a turbulent flow of liquid sodium over a backward-facing step at forced and buoyancy-aided mixed

convection using direct numerical simulation (DNS). And most recently, Oder et al. presented direct numerical simulation of

low-Prandtl fluid flow over a confined backward-facing step [6] . 

Schumm et al. [7,8] compared steady-state Reynolds-averaged Navier–Stokes (RANS) simulations with the direct numeri-

cal simulations performed by Niemann and Frohlich [2] and concluded that the predicted velocity, turbulence kinetic energy

and Reynolds shear stress profiles are in good agreement with the DNS data. They based the choice of the turbulence model

for the Reynolds stresses, namely the Ince and Launder’s model [9] , on the study of Cotton and Jackson [5] . This turbu-

lence model is basically the model of Launder and Sharma [10] including the near-wall length-scale correction term from

Yap [11] in the equation of the dissipation rate of turbulence kinetic energy. The model is widely used due to its algorithmic

simplicity and relatively good performance [3,12] compared to the more advanced model of Hanjali ́c et al. [13] and second-

moment closure models (e.g. Craft et al. [14] , Dol et al. [15] and Manceau et al. [16] ). Moreover, Schumm et al. modeled the

turbulent heat flux with a Simple Gradient Diffusion Hypothesis (SGDH). In addition, they evaluated the turbulent Prandtl

number locally with the correlation of Kays [17] . 

In the modeling and computation of industrial turbulent flows, RANS simulation is often preferred due to its relatively

lower computational cost in comparison with the more detailed large eddy simulation (LES) and direct numerical simula-

tion. However, even RANS simulation is unfeasible for applications that require (almost) in real time modeling or testing

of a large number of different system configurations, for instance for control purposes, sensitivity analyses or uncertainty

quantification studies. This has motivated the development of reduced order modeling techniques. 

Reduced Basis (RB) methods, which retain the essential physics and dynamics of a high fidelity model, have been widely

used in literature for the reduced order modeling of fluid flows [18,19] . The POD-Galerkin approach, which is a classical

RB method, falls into the category of projection-based ROMs. Other types of methods are balanced truncation [20,21] and

goal-oriented ROMs [22] . 

The POD technique was introduced by Lumley [23] to study the coherent structures in experimental turbulent flows. The

technique is also known as the Karhunen–Loeve expansion, principal component analysis or empirical orthogonal functions.

POD is used to formulate an optimal basis spanned by modes to represent the most significant features of a dynamical

system and is therefore widely used in the development of reduced order models. Nevertheless, other ROM bases methods

such as the dynamic mode decomposition [24–26] can also be used. 

The POD-Galerkin approach has recently been used by Lorenzi et al. [27] and Hijazi et al. [28,29] to reduce the RANS

equations in a finite volume framework. Stabile et al. [30] used a different POD-Galerkin based approach for the turbulence

closure, namely the variational multi-scale approach. Other recent effort s that deal with POD-based ROMs using a LES ap-

proach for the turbulence modeling can be found in [31–33] . On the other hand, Carlberg et al. [34] and Xiao et al. [35] pre-

sented a Petrov-Galerkin projection approach for the reduced order modeling of the Navier–Stokes equations. 

Moreover, Georgaka et al. [36] developed a POD-Galerkin reduced order model (ROM) of weakly coupled parametric

Navier–Stokes and energy equations. They also included turbulence modeling in their model [37] . On the other hand, Vergari

et al. [38] and also the authors of this work [39] developed a reduced order model (ROM) of buoyancy-driven flow with the

employment of the Boussinesq approximation to model buoyancy-driven flows. In this work, the POD-Galerkin reduced

order modeling strategy is extended for steady-state Reynolds averaged Navier–Stokes simulations of turbulent convective

buoyant flows of a low-Prandtl number fluid. 

2. Full order turbulence model 

The steady-state governing equations for an incompressible Newtonian fluid, based on the low-Reynolds Launder-Sharma

k − ε model [10] , for turbulent buoyancy-driven flows in the mixed convection regime are 

∇ · U = 0 , (1)

∇ · ( U � U ) = −∇P + ∇ ·
[
ν
(∇ U + 

(∇ U 

T 
))

− u 

′ u 

′ ] − gβ(θ − θre f ) , (2)

∇ · ( U θ ) = ∇ ·
(
α∇θ − u 

′ θ ′ ), (3)
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Table 1 

Low-Reynolds Launder-Sharma k − ε model constants, damping coefficients and source terms with Re t = 

k 2 

νε
. 

C μ σ k σ ε C ε1 C ε2 D E f μ f 1 f 2 κ

0.09 1 1.3 1.44 1.92 2 ν

(
∂ 
√ 

k 

∂x i 

)2 

2 ννt 

(
∂ 2 U 

∂ x i ∂ x i 

)2 

1-0.3 e −Re 2 t 1 e 
−3 . 4 

( 1+ Re t / 50 ) 
2 

0.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∇ · ( U k ) = ∇ 

[ (
ν + 

νt 

σk 

)
∇k 

] 
+ P k − D − ε, (4) 

∇ · ( U ε) = ∇ 

[ (
ν + 

νt 

σε

)
∇ε

] 
+ 

ε

k 
[ C ε1 f 1 P k − C ε2 f 2 ε] + E, (5) 

where U , P , and θ are the ensemble averaged fields for velocity, kinematic pressure, which is pressure divided by the fluid

density ρ , and temperature, respectively. u 

′ and θ ′ are the turbulent fluctuating components for velocity and temperature,

respectively. Eqs. (1), (2) and (3) are the continuity, momentum and energy equations, respectively. Eq. (4) is the transport

equation for turbulence kinetic energy k and Eq. (5) is the transport equation for the rate of dissipation of turbulence kinetic

energy ε. Furthermore, ν is the kinematic viscosity, νt is the eddy viscosity and α is the thermal diffusivity. The buoyancy

is considered by the employment of the Boussinesq approximation in the last term of Eq. (2) , where θ ref is a reference

temperature, g the gravitational acceleration and β the thermal expansion coefficient. To avoid numerical issues, due to

large gradients of the buoyancy force, buoyant flow solvers typically use the shifted kinematic pressure P rgh = P − g · r, with

r the position vector, rather than the static kinematic pressure P . The production term of k in Eqs. (4) and (5) is given by 

P k = −u 

′ u 

′ ∇U . (6) 

Note that with this model the effect of buoyancy is not modeled in the turbulence transport equations Eqs. 4 and (5)

[40–42] which is in accordance with the model of Schumm et al. [8] . The values of the constants σ k , σ ε , C ε1 , C ε2 and the

damping functions f 1 and f 2 are listed in Table 1 . 

As low-Reynolds turbulence models are based on damping functions and the extra source terms D and E (listed in

Table 1 ), which enable the integration of the turbulence transport equations up to the wall, the use of turbulence wall func-

tions is avoided. However, two equation-based turbulence models tend to over predict the turbulence length scale in flows

at adverse pressure gradients [43] such as those found in detachment, reattachment and impinging regions. Accordingly,

Schumm et al. [8] concluded in their study on turbulent flow over a backward-facing step that the turbulence near-wall

length scale correction of Yap [11] needs to be added as an additional source term to the right hand side of the transport

equation of ε ( Eq. 5 ). This correction has the form 

S ε = 0 . 83 

ε2 

k 

(
k 1 . 5 

εl e 
− 1 

)(
k 1 . 5 

εl e 

)2 

, (7) 

where the turbulence length scale, l e , is given by 

l e = C −0 . 75 
μ κy + , (8) 

where κ is the von Karman constant, C μ a model constant, both listed in Table 1 , and y + is the dimensionless wall distance.

Furthermore, the unclosed terms that contain products of fluctuating values, namely the Reynolds stress term u 

′ u 

′ , and

the turbulence heat transfer tensor u 

′ θ ′ , need to be modeled. The Reynolds stress term is defined as 

−( u 

′ u 

′ ) = 2 νt S − 2 

3 

k I, (9) 

where S = 

1 
2 [ ∇U + (∇U 

T )] is the Reynolds-averaged strain rate tensor and I is the identity tensor. The eddy viscosity, νt , is

computed by 

νt = C μ f μ
k 2 

ε
, (10) 

with f μ listed in Table 1 . 

The turbulence heat flux tensor is modeled with the single gradient diffusion hypothesis (SGDH) given by the turbulence

thermal diffusivity, αt , and the mean temperature gradient as follows 

u θ ′ = −αt ∇θ . (11) 

The SGDH expresses the turbulence thermal diffusivity as the ratio between the eddy viscosity, νt , and the turbulence

Prandtl number, Pr t , as 

αt = 

νt 

Pr 
. (12) 
t 
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Typically, Pr t is around 0.9 for wall-bounded flows. Here, the local correlation of Kays [17] is applied to have a good fit to

DNS of both turbulent flow in ducts and the turbulent external boundary layer of fluids with 0.025 ≤ Pr ≤ 0.1 [8] . Pr t is

defined as 

Pr t = 0 . 85 + 

0 . 7 

Pe t 
, (13)

where Pe t is the turbulence Peclet number, as function of the Prandtl number and the eddy viscosity divided by the viscos-

ity [44] , given by 

Pe t = 

νt 

ν
Pr . (14)

2.1. Flow characteristics by non-dimensional numbers 

The flow characteristics of a fluid can be expressed by non-dimensional numbers. The most relevant ones for turbulent

convective buoyant flow are given and explained here. 

The ratio of the inertial forces to the viscous forces within the fluid is defined as the Reynolds number (Re) 

Re = 

U b h 

ν
, (15)

where U b is the bulk velocity of the fluid and h is the characteristic dimension, which is taken to be the step height. At high

Reynolds numbers, the flow is dominated by the inertial forces and is therefore considered turbulent, which is typically for

Re > 40 0 0 in channel flows. 

The Richardson number (Ri) represents the importance of natural convection to the forced convection and is used to

determine whether the flow is in the forced, mixed or natural convection regime. In this context, Ri is defined as 

Ri = 

Gr 

Re 2 
= 

gβh 

2 q ′′ 
λU 

2 
b 

, (16)

with Gr the Grashof number defined as 

Gr = 

gβh 

4 q ′′ 
ν2 λ

, (17)

where g is the acceleration due to gravity, q ′′ the applied wall heat flux and λ is the thermal conductivity of the fluid.

Typically, the flow is in the forced convection regime when Ri < 0.1, in the natural convection regime when Ri > 10, and

in the mixed regime when 0.1 < Ri < 10 [45] . 

The Stanton number (St) is given by the ratio of the heat transferred into the fluid to the thermal capacity of the fluid

itself. Here the Stanton number, as function of the heat flux, is defined as 

St = 

q ′′ 
ρU b c p �θ

= 

q ′′ ν
ρU b λP r�θ

, (18)

where �θ is the characteristic temperature difference and c p the specific heat of the fluid. 

The skin friction coefficient (c f ) is a function of the shearing stress exerted by the fluid on the wall surface over which it

flows 

c f = 

τw 

0 . 5 ρU 

2 
b 

, (19)

where τw 

is the wall shear stress. There is a relationship between skin friction and heat transfer for steady flows, which is

known in the context of Reynolds analogy [46] . 

3. POD-Galerkin reduced order model for buoyancy-driven turbulent flows 

The Proper Orthogonal Decomposition method is used to create a reduced basis space that is spanned by a number

of basis functions, or so-called modes, which capture the essential dynamics of the system [18,47–49] . The RB method

assumes that the full order steady-state solutions, the so-called snapshots, of the discretized RANS equations for different

parameter values, μ, can be expressed as a linear combination of orthonormal spatial modes multiplied by parameter-

dependent coefficients. For velocity, shifted kinematic pressure and temperature the approximations are given by 

U (x , μ) ≈ U r = 

N r ∑ 

i =1 

ϕ i (x ) a i (μ) , (20)

P rgh (x , μ) ≈ P rgh r = 

N r ∑ 

i =1 

χi (x ) a i (μ) , (21)
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θ (x , μ) ≈ θr = 

N θr ∑ 

i =1 

ψ i (x ) b i (μ) , (22) 

where ϕi , χ i and ψ i are respectively the velocity, shifted kinematic pressure and temperature modes. It is assumed that ve-

locity and pressure share the same coefficients a i ( μ), while b i ( μ) are the corresponding coefficients for temperature [27,50] .

Therefore, only two sets of variables are necessary [38] . N r is the number of velocity and shifted kinematic pressure modes

and N 

θ
r is the number of temperature modes. 

The above assumptions can be extended to the eddy viscocity fields, νt , and the turbulence thermal diffusivity fields, αt ,

in the following way 

νt (x , μ) ≈ νt r = 

N 
νt 
r ∑ 

i =1 

ηi (x ) c i (μ) , (23) 

αt (x , μ) ≈ αt r = 

N 
αt 
r ∑ 

i =1 

ζi (x ) d i (μ) , (24) 

with N 

νt 
r the number of eddy viscosity modes and N 

αt 
r the number of turbulence thermal diffusivity modes, respectively.

ηi ( x ) and ζ i ( x ) are the eddy viscosity and the turbulence thermal diffusivity modes, respectively, and c i ( μ) and d i ( μ) the

corresponding coefficients. 

The optimal POD basis space for velocity, E POD 
U 

= span( ϕ 1 , ϕ 2 , ..., ϕ N r ), is constructed by minimizing the difference be-

tween the snapshots and their orthogonal projection onto the reduced basis [51] as follows 

E POD 
U = arg min 

ϕ 1 ,..., ϕ N r 

1 

N s 

N s ∑ 

n =1 

‖ U n ( x ) −
N r ∑ 

i =1 

( U n ( x ) , ϕ i ( x ) ) L 2 ( �) ϕ i ( x ) ‖ 

2 
L 2 ( �) 

, (25) 

where N s is the number of collected snapshots and N s > N r . The same approach can be followed for the shifted kine-

matic pressure to determined the subspace E POD 
P rgh 

= span( χ1 , χ2 , ..., χN r ). The L 2 -norm is preferred for discrete numerical

schemes [52,53] with ( ·, ·) L 2 (�) the L 2 -inner product of the fields over the domain �. Furthermore, as the modes are or-

thonormal to each other, 
(
ϕ i , ϕ j 

)
L 2 (�) 

= δi j holds, where δ is the Kronecker delta. 

For temperature, the subspace E POD 
θ

= span( ψ 1 , ψ 2 , ..., ψ 

N θr 
) is obtained by solving a minimization problem similar to

Eq. (25) . The same procedure also applies for the subspaces E POD 
νt 

= span( η1 , η2 , ..., ηN 
νt 
r 

) and E POD 
αt 

= span( ζ 1 , ζ 2 , ..., ζN 
αt 
r 

). 

The velocity POD modes are obtained by solving Eq. (25) using the following eigenvalue problem on the correlation

matrix C of the velocity snapshots [53–55] 

CQ = Qλ, (26) 

where C ij = 

(
U i , U j 

)
L 2 (�) 

for i, j = 1,..., N s is the velocity correlation matrix, Q is a square matrix of eigenvectors and λ is a

diagonal matrix containing the eigenvalues. The velocity POD modes are then constructed in the following way 

ϕ i (x ) = 

1 

N s 

√ 

λi 

N s ∑ 

n =1 

U n (x ) Q i,n for i = 1 , ..., N r . (27)

As the same basis for velocity and shifted kinematic pressure are used, no additional stabilization, as the supremizer or

Pressure Poisson Equation approach [53,54] , is needed. For the same reason, the shifted kinematic pressure modes are con-

structed using the previously obtained matrix of eigenvectors Q 

χi ( x ) = 

1 

N s 

√ 

λi 

N s ∑ 

n =1 

P rg h n ( x ) Q i,n for i = 1 , ..., N r , (28) 

where N s is the number of collected shifted kinematic pressure snapshots. The temperature, eddy viscosity and turbulence

thermal diffusivity POD modes are determined by solving a similar eigenvalue problem as Eq. (26) . For more details on

obtaining the POD modes, the reader is referred to [38,53] . 

To obtain a reduced order model the POD is combined with the Galerkin projection. The momentum equations ( Eq. 2 )

with substitution according to Eqs. (20), (21), (22) and (23) are projected onto the POD basis space of velocity, ϕi ( x ). The

energy equation ( Eq. 3 ) with substitution according to Eqs. (20), (22) and (24) is projected onto the temperature spatial

basis, ψ i ( x ). This results in the following reduced system of Ordinary Differential Equations (ODEs) 

a 

T C r a = −A r a + ν(B r + BT r ) a + c T (CT 1 r + CT 2 r ) a − H r b, (29)

a 

T Q r b = αY 1 r b + d 

T Y 2 r b, (30) 
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where 

B r i j 
= 

(
ϕ i , ∇ · ∇ϕ j 

)
L 2 (�) 

, (31)

BT r i j 
= 

(
ϕ i , ∇ ·

(∇ϕ 

T 
j 

))
L 2 (�) 

, (32)

C r i jk 
= 

(
ϕ i , ∇ · (ϕ j � ϕ k ) 

)
L 2 (�) 

, (33)

CT 1 r i jk 
= 

(
ϕ i , ∇ · η j ∇ϕ k 

)
L 2 (�) 

, (34)

CT 2 r i jk 
= 

(
ϕ i , ∇ · η j 

(∇ϕ 

T 
k 

))
L 2 (�) 

, (35)

A r i j 
= 

(
ϕ i , ∇χ j 

)
L 2 (�) 

, (36)

H r i j 
= 

(
ϕ i , (g · r) ∇(−β(ψ j − θre f )) 

)
L 2 (�) 

, (37)

Y 1 r i j 
= 

(
ψ i , ∇ · ∇ψ j 

)
L 2 (�) 

, (38)

Y 2 r i jk 
= 

(
ψ i , ∇ ·

(
ζ j ∇ψ k 

))
L 2 (�) 

, (39)

Q r i jk 
= 

(
ψ i , ∇ · (ϕ j � ψ k ) 

)
L 2 (�) 

. (40)

The reduced matrices associated with the linear terms and the third order tensors associated with the non-linear terms

of the governing equation are stored before constructing the reduced order model during a, so called, offline stage. More

details on the treatment of the non-linear terms can be found in [53] . 

Note that the system of ODEs has N r + N 

θ
r + N 

νt 
r + N 

αt 
r unknowns, but only N r + N 

θ
r equations to solve. Therefore, the

coefficients c i ( μ
∗) and d i ( μ

∗) for any new value of an input parameter μ∗ are computed with a non-intrusive interpolation

procedure using Radial Basis Functions (RBF), as described in [56] . Here the procedure is described for obtaining the eddy

viscosity coefficients c i ( μ
∗); the procedure can applied in a similar fashion to the turbulence thermal diffusivity coefficients

d i ( μ
∗). 

The RBF approach assumes that the coefficients c i ( μ
∗) can be approximated for any new value of input parameter μ∗ as

a linear combination of N 

νt 
r chosen RBF kernels �i [57] as follows 

c i (μ
∗) = 

N 
νt 
s ∑ 

j=1 

w i j �i 

(‖ μ∗ − μ j ‖ L 2 

)
for i = 1 , 2 , ...N 

νt 
r , (41)

where N 

νt 
s is the number of eddy viscosity snapshots, μj are the sampling points corresponding to the eddy viscosity snap-

shots νt j 
and w ij are the weights that need to be determined. These weights are calculated by solving the following linear

system 

N 
νt 
s ∑ 

j=1 

w i j �i 

(‖ μk − μ j ‖ L 2 

)
= c ik for i = 1 , 2 , ...N 

νt 
r and k = 1 , 2 , ...N 

νt 
s , (42)

where the output c ik is a set of known eddy viscosity coefficients that are calculated by projecting the eddy viscosity snap-

shots νt k 
obtained for the parameter inputs μk for k = 1, 2,..., N 

νt 
s onto the obtained spatial eddy viscosity modes ηi ( Eq. 23 )

in the following way 

c ik = 

(
νt k , ηi 

)
L 2 (�) 

for i = 1 , 2 , ...N 

νt 
r and k = 1 , 2 , ...N 

νt 
s . (43)

Various kernels, �i , can be used for the RBFs. In this work, Gaussian kernels are considered, which have a local response,

meaning that their best response is in the area near the center, in contrast to multi-quadratic RBFs which have a global

response. The Gaussian kernels are defined as 

�i 

(‖ μ − μ j ‖ L 2 

)
= e 

(
−γ ‖ μ−μ j ‖ 2 L 2 

)
for i = 1 , 2 , ...N 

νt 
r and j = 1 , 2 , ...N 

νt 
s , (44)

where γ is the parameter that determines the radius of the kernel. The RBF decreases monotonically away from the center.

Once the coefficients c i and d i for new input parameters μ∗ are obtained, the set of ODEs, Eqs. (29) and (30) , can be

solved to obtain the coefficients a ( μ∗) and b ( μ∗). For more details about using RBF in this type of reduced order modeling

setting the reader is referred to [28] . 

The advantage of determining the coefficients with RBFs is that it is not needed to project the turbulence modeling

equations Eqs. 4 and (5) onto the reduced basis spanned by the eddy viscocity modes. These equations are often, even when
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using open source codes like OpenFOAM [58] , challenging to access. Also the turbulence thermal diffusivity coefficients are

determined with RBFs as αt is not directly proportional to νt due to the use of the local correlation by Kays ( Eq. 13 ) for the

calculation of Pr t in the SGDH. 

Good initial guesses for the reduced system of ODEs Eqs. 29 and (30) are obtained by projecting, respectively, the velocity

and temperature snapshots for a certain parameter value μ that is close to the value of a new input parameter μ∗ onto the

POD basis spaces as follows 

a i (μ
∗) = ( ϕ i (x ) , u (x , μ) ) L 2 (�) , (45) 

b i (μ
∗) = ( ψ i (x ) , θ (x , μ) ) L 2 (�) . (46) 

4. Treatment of the non-homogeneous boundary conditions 

The POD basis functions are a linear combination of the snapshots and so are their values at the boundaries [59] . There-

fore, when using a POD-based reduced order modeling technique, the non-homogeneous boundary conditions (BCs) are, in

general, not satisfied by the ROM [60] . Furthermore, the BCs are not explicitly present in the reduced system and there-

fore they cannot be controlled directly [27] . A common approach for handling the BCs at reduced order level is a penalty

method [61] . This method enforces explicitly the BCs in the ROM with a penalty factor. Originally, a penalty method, was

proposed by Lions and Mag ȿ nes [62] in the context of finite element methods. They introduced a penalty parameter to

weakly impose the boundary conditions. In the POD-Galerkin reduced order modeling setting, the penalty method has been

first introduced by Sirisup and Karniadakis [63] for the enforcement of boundary conditions. The value of the penalty factor

τ is generally chosen arbitrary [60] . Nevertheless, if the penalty factor tends to infinity a strong imposition of the boundary

conditions would be approached and the ROM becomes ill-conditioned [27] . On the other hand, small values of the factor

result in a weak imposition [63] and the method becomes numerically unstable [64] . Moreover, the penalty factors τ should

be larger than 0 in order to have an asymptotically stable solution [27] . Therefore, the penalty factor needs to be chosen

above a threshold value for which the method is stable and converges [64] . For these reasons, the (suitable range for the)

penalty factor is often determined via a sensitivity study [27,61,65] . 

The Dirichlet BC for velocity, u BC , is implemented in the momentum equation as follows 

∇ · ( U � U ) + ∇P − ∇ ·
[
ν
(∇U + 

(∇U 

T 
))

− u 

′ u 

′ ] + gβ(θ − θre f ) + τU �1 (U − u BC ) = 0 , (47)

where �1 is the relevant boundary of the domain � and τU is the penalty factor. 

Vergari et al. [38] extended the penalty method to Neumann BCs. In this work, the Neumann boundary condition is only

applied for temperature on a boundary �2 and is considered to be related to the heat flux on the boundary, q ′′ BC , in the

following way 

n · ∇θ | �2 
= −q ′′ BC 

λ
. (48) 

The Neumann temperature BC together with a Dirichlet temperature BC, θBC are enforced in the energy Eq. (3) on respec-

tively boundary �2 and �3 as follows 

∇ · ( U θ ) − ∇ 

(
α∇θ − u 

′ θ ′ ) + τ∇θ�2 

(
n · ∇θ + 

q ′′ BC 

λ

)
+ τθ�3 (θ − θBC ) = 0 , (49) 

where τ θ is the penalty factor for the Dirichlet BC and τ∇θ for the Neumann BC. 

Substituting the approximated expansions Eqs. 20 - (24) for the fields into Eqs. (47) and (49) and applying the Galerkin

projection results in the following reduced system of equations 

a 

T C r a + A r a − ν(B r + BT r ) a − c T (CT 1 r + CT 2 r ) a + H r b + τU ( u BC N1 r − O 1 r a ) = 0 , (50)

a 

T Q r b − αY r b − d 

T Y 2 r b + τ∇θ

(
q ′′ BC 

λ
N2 r − 02 r b 

)
+ τθ ( θBC N3 r − O 3 r b ) = 0 , (51)

where the new terms related to boundaries �1 , �2 and �3 are 

N1 r i = ( ϕ i , 1 ) L 2 ( �1 ) 
, (52) 

N2 r i = ( ψ i , 1 ) L 2 ( �2 ) 
, (53) 

N3 r i = ( ψ i , 1 ) L 2 ( �3 ) 
, (54) 

O 1 r ij = 

(
ϕ i , ϕ j 

)
L 2 ( � ) 

, (55) 

1 
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Fig. 1. A sketch of the geometry of the backward-facing step and the precursor domain. 

Fig. 2. A 2D sketch of the geometry of the backward-facing step divided into several zones and including boundaries. 

Table 2 

The number of cells, N , along the horizontal ( x 1 , x 2 and x 3 ) and vertical sides ( y 1 , y 2 ) of each zone depicted 

in Fig. 2 . 

N y 1 N y 2 N x 1 N x 2 N x 3 

Number of cells 225 225 126 900 338 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O 2 r ij = 

(
ψ i , ψ j 

)
L 2 ( �2 ) 

, (56)

O 3 r ij = 

(
ψ i , ψ j 

)
L 2 ( �3 ) 

. (57)

5. Numerical set-up 

In this section the numerical set-up for a backward-facing step is described. Fig. 1 depicts a sketch of the geometry. The

height of the step is h and the channel height is H , which equals 2 h . Consequently, the Expansion Ratio (ER) between inlet

and outlet is ER = H /( H − h ) = 2. The inlet is located L u = 4 h upstream of the step. A constant heat flux is applied on the

bottom wall directly downstream of the step over a length L h = 20 h and is referred to as ”the heater”. This wall is followed

by an adiabatic wall of length L r = 20 h . 

A mesh is constructed in the three-dimensional domain, but can be considered to be two-dimensional as it contains only

one layer of cells in the z-direction. The distribution of the cells are described in Fig. 2 and in Table 2 . These distributions

are taken from the finest mesh of the grid refinement study performed by [8] . Similar to their work, the cells are clustered

towards the walls and in stream-wise direction towards the end of the heater where steep changes in the velocity gradients

are expected. The mesh contains a total number of 585,450 hexahedra cells. 

The characteristic dimension of the domain is the step height h = 0.05 m. A hydrodynamic fully developed channel

flow profile is applied at the inlet boundary �i . This inlet velocity profile is generated via a separate simulation of an

isothermal channel flow of height h and length 10 h with the inlet bulk velocity U b = 0.1192 m/s. The flow, characterized by

the Reynolds number Re = 10 5 ( Eq. 15 ), is considered to be fully turbulent. The hyperbolic stream-wise velocity profile at

the outlet of the channel is set as the inlet velocity profile of the backward-facing step as depicted in Fig. 1 . At the outlet,

�o , a homogeneous Neumann boundary condition is set for all variables except for pressure. Only the relative pressure is

calculated and therefore it is set to 0 Pa at the outlet. At all solid walls a no-slip condition is applied and the turbulence

quantities, k and ε, are set to zero. All walls except for the heated one, �∇θ , are adiabatic. 

The fluid properties are taken for liquid sodium at a constant inlet temperature θ = θ in = 423.15 K = 150 ◦C with the

kinematic viscosity ν = 5 . 96 · 10 −7 m 

2 / s and thermal diffusivity α = 6 . 8 · 10 −5 m 

2 / s , meaning that the Prandtl number, Pr, is

equal to 0.0088. 

RANS simulations are performed for Richardson numbers ( Eq. 16 ) in a range of Ri = [0.0, 0.5] with steps of 0.05, covering

partly the forced- and mixed convection regime. To calculate these Richardson numbers, the thermal expansion coefficient,
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Table 3 

y + values at the heater compared with the results of [8] . 

Ri y + 
min 

y + 
min 

[8] y + max y + max [8] y + a v g y + a v g [8] 

0.0 5.9 e −5 2.5 e −3 3.1 e −1 5.6 e −1 1.7 e −1 3.3 e −1 

0.2 4.2 e −3 1.2 e −3 4.4 e −1 0.9 e −1 3.3 e −1 7.1 e −2 

0.4 7.5 e −3 1.9 e −3 6.2 e −1 1.1 e −1 4.7 e −1 9.1 e −2 

Fig. 3. Velocity (top), shifted kinematic pressure (middle) and temperature fields obtained with the RANS simulations for Ri = 0.2 (left) and Ri = 0.4 

(right), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β is considered to be equal to 2 . 5644 · 10 −4 K 

−1 [2] . Similar to the numerical experiments done by [8] , the backward-facing

step is placed vertically by having the gravitational acceleration in the downward direction with g = (-9.81, 0, 0) m/s 2 . 

The steady-state RANS equations Eqs. 1 - (5) are discretized by the Finite Volume method with the open source C++ li-

brary OpenFOAM 6 [58] . The simulations are run in parallel on 8 Intel® Xeon® E5-2680 v3 @ 2.50 GHz cores. The SIMPLE

algorithm for the pressure-velocity coupling is used [66] and blended schemes with an order of accuracy between one and

two have been used for the spatial discretization. A solution is assumed to be converged when the scaled residuals of all

variables are below 10 −5 . 

The y + values at the heater for Ri = 0.0, 0.2, and 0.4 are compared with the values obtained by Schumm et al. [8] for

the same distribution of the cells in Table 3 and similar values are observed. 

The calculation of the POD modes, the Galerkin projection of the RANS solutions on the reduced subspace and the ROM

simulations are carried out with ITHACA-FV [67] on a single Intel® Xeon® core. ITHACA-FV is a C++ library based on the

Finite Volume solver OpenFOAM [58] . For more details on the ITHACA-FV code, the reader is referred to [53,54,67] . 

The ROM is tested for four Richardson numbers Ri = 0.12, 0.24, 0.36 and 0.48 that are all within the aforementioned

range. The ROM solutions are compared with the RANS solutions for these Richardson numbers, which are not used in the

creation of the ROM basis, to check the consistency of the method. 

6. Results 

Firstly, 10 steady-state RANS simulations are performed for the vertical backward-facing step case for Richardson num-

bers in the range [0.05, 0.5] with steps of 0.05. The associated heat flux ( Eq. 48 ) in the range [112.5, 1125] W/m 

2 is consid-

ered to be the corresponding varying physical parameter. The converged solutions are taken as snapshots, which are then

used to create the POD basis functions. Fig. 3 shows the velocity magnitude, shifted kinematic pressure, and temperature

fields for Ri = 0.2 (left) and Ri = 0.4 (right). 

The same figure shows that the effect of buoyancy on the flow field and heat transfer is larger for higher Richardson

numbers. For instance, it can be clearly seen that increasing the heat flux results in a decrease of the recirculation zone

directly downstream of the step. This is also reported in [8] and [68] . 

6.1. Relative errors 

The approximated fields are obtained by multiplying the coefficients with the basis functions as in Eqs. (20) - (24) . The

associated L 2 -error between the snapshots X FOM 

and the approximated fields X r , also called the (basis) projection error, is

given for every parameter value, μ, by 

‖ ̂

 e ‖ L 2 (�) (μ) = 

‖ X F OM 

(μ) − X r (μ) ‖ L 2 (�) 

‖ X F OM 

( μ) ‖ L 2 (�) 

, (58) 
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Fig. 4. Relative basis projection error of all snapshots for different number of modes: (left) velocity relative error; (right) temperature relative error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where X represents any field, for instance those of velocity or temperature. 

Fig. 4 shows the projection errors for velocity and temperature up to the first eight modes. The figure shows that for

a certain parameter value the error monotonically decreases when the number of modes is increased. These errors act as

a lower error bound for the reduced order model. In practice, the prediction error ‖ e ‖ L 2 (�) (μ) for the fields obtained by

solving the ROM, X ROM 

, is larger than the projection error. Here the prediction error is defined as 

‖ e ‖ L 2 (�) (μ) = 

‖ X F OM 

(μ) − X ROM 

(μ) ‖ L 2 (�) 

‖ X F OM 

( μ) ‖ L 2 (�) 

. (59)

In order to retain 99.99% of the energy contained in the snapshots for all physical variables 4 velocity modes, 4 shifted

kinematic pressure modes, 1 temperature mode, 6 eddy viscosity modes and 6 turbulence thermal diffusivity modes are

needed. Adding more modes can improve the accuracy of the ROM, but this has a detrimental effect on the computational

time. Therefore, there is a trade-off between the two options. Based on Fig. 4 , 5 velocity modes, 5 shifted kinematic pressure

modes and 5 or 8 temperature modes are used for the construction of the ROM. The projection error is about 10 −2 and 10 −4

for velocity and temperature, respectively. Furthermore, 8 eddy viscosity and turbulent thermal diffusivity modes are used

to accurately determine the corresponding coefficients with the RBF approach. 

6.2. Determining the penalty factors 

The penalty factors are determined via a sensitivity study by performing multiple ROM simulations for different values

of the factors. To show the effect of the penalty factors, the relative prediction errors for velocity and temperature with

N 

θ
r = 5 are shown in Fig. 5 for the following two cases 

(A) τU = 1 , τ∇θ = 1 , τθ = 1 , 

(B) τU = 10 6 , τ∇θ = 10 6 , τθ = 10 6 . 

This figure shows that the relative prediction error for both velocity and temperature improves when the penalty factors

are larger. The results for other combinations of factors are not shown here as they do not lead to an overall improvement

of the prediction error compared to case B. 

6.3. Comparison of the ROM and RANS solutions 

Reduced order simulations are performed for the same parameter values μ for which the snapshots are collected. The

results of the ROM simulations are compared with the results of the RANS simulations for the cases of Ri = 0.2 and 0.4. The

stream-wise velocity, the wall normal velocity and the non-dimensional temperature profiles are shown in Figs. 6 , 7 and 8 ,

respectively. Only the results with N 

θ
r = 5 are shown. Good agreement with the RANS data is found for these cases. As also

observed by Schumm et al. [8] the recirculation zone is reduced in its stream-wise extent ( Fig. 6 ) with increasing buoyancy.

Also, the velocity profiles have their peak forming above the heater. 

Furthermore, the wall normal velocity component, shown in Fig. 7 , is in agreement with the results found in [8] . As a

positive wall normal velocity component transports momentum from the heater towards the upper wall, the temperature at

the heater is lower for Ri = 0.4 compared to Ri = 0.2, as can be seen in Fig. 8 . Even though the velocity profiles are in good
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Fig. 5. Relative prediction error for two sets of penalty factors and different Richardson numbers and N θr = 5. Case A: τU = 1 , τ∇θ = 1 , τθ = 1 . Case B: 

τU = 10 6 , τ∇θ = 10 6 , τθ = 10 6 . (Left) Velocity relative error; (right) temperature relative error. 

Fig. 6. Profiles of the normalized stream-wise velocity component at several locations downstream of the step for Ri = 0.2 and Ri = 0.4, respectively, 

obtained by performing RANS and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

Fig. 7. Profiles of the normalized wall normal velocity component at several locations downstream of the step for Ri = 0.2 and Ri = 0.4, respectively, 

obtained by performing RANS and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

 

 

 

 

 

 

 

 

 

agreement with literature, the flow near the upper wall starts heating up further downstream at around x / h = 27 compared

to the cases studied by Schumm et al. [8] where this phenomenon was already present at around x / h = 15. This means that

less mixing takes place in the thermal field of this study compared to their study, which can be caused by a lower shear

stress. 

The local Stanton number profiles, depending on the applied heat flux, along the heater are shown in Fig. 9 on the left

for Ri = 0.1, 0.2, 0.3, 0.4 and 0.5. The same figure on the right shows the skin friction distribution, depending on the wall

shear stress, at the heater and further downstream up to x / h = 30 for the same Richardson numbers on the right. Not all

cases are shown for the sake of clarity. The distributions obtained by the RANS simulations are in good agreement with the

literature. Furthermore, the results, and especially those of the skin friction distribution downstream of the heater, show that

buoyancy has a large influence on the flow and heat transfer. This is due to the high thermal conductivity of low-Prandtl
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Fig. 8. Normalized temperature profiles at several locations downstream of the step for Ri = 0.2 and Ri = 0.4, respectively, obtained by performing RANS 

and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

Fig. 9. Non-dimensional flow characteristics determined by the RANS and ROM simulations for several Richardson numbers: (left) local Stanton number at 

the heater; (right) skin friction distribution downstream of the backward-facing step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number fluids. Even though the behavior is non-linear, the reduced order model is capable of reproducing the RANS results

with a good accuracy. 

6.4. Reduced order simulations for new parameter values 

Besides the parameter for which snapshots are collected, the ROM is tested on four additional Richardson numbers,

namely Ri = 0.12, 0.24, 0.36 and 0.48. Fig. 10 shows the prediction error for these cases with five and eight temperature

modes. The figure shows that especially for Ri = 0.48 both the velocity and temperature relative error is reduced when

the number of temperature modes is increased from five to eight. However, the opposite is true for Ri = 0.24. In that case,

increasing the number of temperature modes has a detrimental effect on the prediction error of temperature. Therefore, five

temperature modes are used further for Ri = 0.12 and 0.24, while eight temperature modes are used for Ri = 0.36 and 0.48.

Fig. 11 shows the local Stanton number and the skin friction distribution downstream of the step. The ROM results

for Ri = 0.24 and 0.48 are overlapping with the distributions obtained by the RANS simulations. For Ri = 0.36 the ROM

solution is accurate looking at the local Stanton number. However, the solutions for the skin friction deviates from the RANS

solutions downstream of the heater. For Ri = 0.12 the ROM over-predicts the local Stanton number and under-predicts the

skin friction. An attempt is made to reduce the error for this case by increasing/decreasing the number of modes of all

variables and increasing/decreasing the penalty factors. However, all solutions are deviating from the ROM solution by a few

percent, while for all other parameter values the deviation is less than 0.1% in case of the local Stanton number. 

To see whether this affects the velocity and temperature distribution, the profiles downstream of the step are plotted in

Figs. 12 , 13 and 14 . Only the profiles of the wall normal velocity component at x / h = 3 show a small deviation between

the RANS and ROM solution for Ri = 0.12. For all other profiles, the ROM solutions are fully overlapping with the RANS

solutions. 

The performance of the Radial Basis Function interpolation is checked by comparing the ratio of the eddy viscosity to

kinematic viscosity at several locations downstream of the step determined by the RANS and ROM simulations for Ri = 0.12

and Ri = 0.36, as shown in Fig. 15 . Also for these fields, the ROM solutions are fully overlapping with the RANS solutions. 
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Fig. 10. Relative prediction error for all Richardson numbers with N θr = 5 and N θr = 8 temperature modes, respectively, used for the construction of the 

ROM: (left) velocity relative error; (right) temperature relative error. 

Fig. 11. Non-dimensional flow characteristics determined by the ROM compared with those determined by RANS simulations for several Richardson num- 

bers: (left) local Stanton number at the heater; (right) skin friction distribution downstream of the backward-facing step. 

Fig. 12. Profiles of the normalized stream-wise velocity component at several locations downstream of the step for Ri = 0.12 and Ri = 0.36, respectively, 

obtained by performing RANS and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

 

 

 

 

 

Finally, one RANS simulation takes on average 17 h to converge on 8 Intel® Xeon® cores. On the other hand, one ROM

simulation takes about 1.5 s to converge on a single core. Therefore, the speed-up is about the order O(10 5 ). The compu-

tational cost of the construction of the ROM is not taken into account in the calculation of the speed-up offered by the

ROM itself. The whole construction of the ROM, including the collection of snapshots, calculating the POD modes and the

reduced matrices, can be done in an offline phase on a high performance computing environment. For this case, the entire
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Fig. 13. Profiles of the normalized wall normal velocity component at several locations downstream of the step for Ri = 0.12 and Ri = 0.36, respectively, 

obtained by performing RANS and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

Fig. 14. Normalized temperature profiles at several locations downstream of the step for Ri = 0.12 and Ri = 0.36, respectively, obtained by performing 

RANS and ROM simulations. The legend depicts the number of temperature modes, N θr , used for the ROM. 

Fig. 15. Comparison of the ratio of eddy viscosity to kinematic viscosity at several locations downstream of the step determined by the RANS and ROM 

simulations for Ri = 0.12 (left) and Ri = 0.36 (right), respectively. The legend depicts the number of temperature modes, N θr , used for the ROM. 

 

 

 

 

offline phase, which is dominated by the time it takes for the RANS simulations to converge, can be done in about 17 h

using parallel calculations on 10 (the number of snapshots) x 8 cores. 

7. Discussion 

The results for certain Richardson numbers show that increasing the number of modes for the construction of the re-

duced basis space does not necessary result in a more accurate reduced order model. For instance, the relative prediction

error of temperature is an order higher if eight instead of five temperature modes are used for Ri = 0.24, which can be

clearly seen in Fig. 10 . This indicates that the ROM is not fully consistent with the high-fidelity model. 
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The discrepancy between the RANS and ROM simulations can have different causes. First of all the SIMPLE algorithm is

implemented in the high fidelity model, but not in the reduced order model. 

Furthermore, the turbulence transport equations for k and ε Eqs. 4 and (5) are not projected on the reduced basis.

Instead, the eddy viscosity and turbulence thermal diffusivity fields are approximated with an RBF interpolation approach.

The advantage is that the reduced order model is independent of the turbulence model used in the RANS simulations [28] .

Also if the effect of buoyancy is modeled in the turbulence transport equations Eqs. 4 and (5) , the reduced system of

equations Eqs. 29 and (30) does not have to be adjusted. Another option is to project the equation for the turbulence

diffusivity field, Eq. (12) in combination with Eq. (13) , onto the reduced basis. Then the νt and αt fields can share the same

coefficients as αt is depending on νt ( Eq. 12 ). However, this is not tested in this study. 

Moreover, some modes contain more features of the flow solution for higher Richardson numbers than others. This can

be seen in Fig. 5 as the basis projection error is not the same for all Richardson numbers. Also, the projection error stagnates

more or less at 7 modes, as can be seen in the same figure. This means that constructing a reduced basis with even more

modes can have a detrimental effect on the ROM solution as these higher modes contain only a limited amount of physical

information. 

The ROM over-predicts the local Stanton number at the heater and under-predicts the skin friction for Ri = 0.12 as

shown in Fig. 11 . Neither increasing/decreasing the number of modes of all variables nor increasing/decreasing the penalty

factors resulted in a lower error. In this work, the amount of RANS data is limited as only 10 snapshots are used for the

construction of the reduced basis. Therefore, a possible solution is to construct a ROM with more snapshots collected in a

narrow range of Richardson numbers around the parameter to be tested [69] . However, this approach is time consuming as

multiple local reduced order models need to be constructed. 

In this study, the penalty factors are found by numerical experimentation. This can, however, be a time consuming pro-

cess if the results are not satisfactory after a few tries. It remains a question how to properly select the penalty factors for

the enforcement of boundary conditions in the reduced order models. This highlights one of the main drawbacks of the

penalty methods, namely that the factors cannot be determined a priori [61] . The authors of this work presented an itera-

tive method to determine the factors automatically in a ROM setting in [70] , instead of performing a sensitivity study. This

approach can also be used for the ROM developed in this work. 

The parametric ROM is constructed in this work to study solutions for different Richardson numbers, for which the as-

sociated heat flux is considered to be the corresponding varying physical parameter. The ROM is already set-up in such a

way that it can also be used for other parameters. For instance, the constant viscocity is taken outside the reduced ma-

trix for the diffusive term and the inlet velocity that appears as variable in the penalty term of the reduced momentum

equations. Nevertheless, the ROM is not trained for these parameters even when staying within the range of Richardson

numbers for which snapshots are collected. Therefore, a new ROM needs to be constructed if new or additional snapshots

are needed as the POD basis functions are assumed to be based on a linear combination of the snapshots. Furthermore,

geomtric parametrization, like changing the height of the step, is not possible with this ROM. 

The ROM can be extended to unsteady RANS simulation by incorporating a time integration method at reduced or-

der level. However, standard POD-Galerkin ROMs tend to exhibit instabilities when an iterative algorithm for solving the

non-linear implicit equations is implemented at reduced order level [71–74] . An iterative algorithm is required due to the

presence of the coupling between pressure and velocity [53] . Moreover, the snapshots do not only need to be collected in

parameter space, but also at several time instances [75] . 

Finally, it is known from the literature that simulating unsteady turbulent convective (buoyant) flows is challenging and

RANS simulations are inaccurate for large classes of flows [76] . The large eddy simulation method, which is giving access

to the fluctuating quantities, is often required [77–79] . One of the challenges of developing a LES-ROM, other than applying

filtering, is the derivation of the ROM closure model to improve the accuracy and instability of the standard POD-Galerkin

ROM [80–82] . More research is needed to extend the current ROM for transient simulations as well as for large eddy simu-

lation. 

8. Conclusions and perspectives 

A Finite-Volume based POD-Galerkin reduced order modeling strategy for steady-state Reynolds averaged Navier–Stokes 

simulations is developed for low-Prandtl number fluid flow. Simulations are performed for sodium flow over a vertical

backward-facing step with a heater placed on the wall directly downstream of the step. 

The results for different Richardson numbers show that buoyancy has large influence on the flow and heat transfer,

which is due to the high thermal diffusivity of low-Prandtl number fluids. Even though the behavior is non-linear, the

reduced order model is capable of reproducing the RANS results with good accuracy. The prediction error between the

RANS and ROM velocity fields is of the order O( 10 −2 ) and below the order O( 10 −1 ) for new parameter values inside the

range of Richardson numbers. For temperature, the relative error is about or less than the order O( 10 −3 ) for all parameter

values. Also, the local Stanton number and skin friction distribution at the heater are qualitatively well captured. Moreover,

the eddy viscosity fields are approximated well with the Radial Basis Function interpolation method. 

Finally, the reduced order simulations performed on a single Intel® Xeon® core are about 10 5 times faster than the RANS

simulations performed on 8 cores. 
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For further work, the aim is to extend the reduced order model of turbulent convective buoyant flow of low-Prandtl

number fluid for the parametrized unsteady RANS equations. An interesting follow-up study would be to develop a ROM

for unsteady flow and heat transfer of sodium in an outlet plenum [83] . Furthermore, the work can be extended to large

eddy simulations and compressible flows. In addition, future work could include the use of data-driven techniques to adapt

the ROM while the reduced order simulation proceeds [84] . Neural Networks [85] , instead of using Radial Basis Functions

as an interpolation method, could potentially be used to approximate the eddy viscosity and thermal diffusion coefficients

conducted in this work [29] . 
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