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ABSTRACT Artificial Intelligence can provide quite accurate predictions for critical applications
(e.g., healthcare), but lacks the ability to explain its internal mechanism in most applications which
require high interaction with humans. Even if many studies analyze machine learning models and their
learning behavior and eventually provide an interpretation of the inner mechanics of these models, these
studies often entail a simpler surrogate model, which generates explanations by producing a piece of
interpretable information such as feature scores. The crucial caveat against these studies is the lack of
human involvement in the design and evaluation of explanations, consequently giving rise to trust issues
and lack of acceptance and understanding. To this end, we address this limitation by involving humans in
the counterfactual explanation generation process which is enriched with user feedback, thus enhancing the
automated explanations which are better aligned with user expectations. In this paper, we propose a user
feedback based counterfactual explanation approach (FCE) for explainable Artificial Intelligence. In our
work, we utilize feedback in two ways: first, to customize the explanations by providing the acceptable
ranges in the feature space where to look for feasible counterfactuals, and second, to evaluate the generated
explanations.

INDEX TERMS Counterfactual explanations, explainable AI, human-in-the-loop, interactive machine
learning, user feedback.

I. INTRODUCTION
Over the last few decades, artificial intelligence (AI) has
been overwhelmingly responsive to everyday applications
and industries such as self-driving cars, financial services,
and healthcare. The technological advancements (i.e., soft-
ware, hardware) and algorithm updates are the main rea-
sons behind the proliferation of AI. Digitization of multiple
domains and industries has created big data that is difficult
for humans to process to gain insights into decision-making
tasks. It is fair to say that many AI algorithms have reached
to human task performance in many domains. For example,
in Go [1] and Poker games [2], these algorithms outperformed
the professional players. Similarly, AI-based systems are
more accurate in detecting breast cancer [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

In critical decision-making systems, a number of machine
learning (ML) models provide strikingly accurate deci-
sions. Nevertheless, the lack of ability to explain the inter-
nal mechanism of decision-making undermines the users’
trust and hence decreases acceptance and usability of the
systems [4]–[6]. The explanation of ML models is of crucial
importance, however, most of these models are an enigma
because humans cannot inspect how they work and how they
make decisions. This enigma is regarded as a black box, an
AI system that doesn’t provide any details about the internal
working mechanisms to the user [7]–[10].

The need to transform black-box decisions into trans-
parent decisions for human decision-makers has led to a
new field of study known as explainable AI (XAI)1 [11].

1XAI stands for eXplainable Artificial Intelligence. This acronym
became popular when the USA Defense Advanced Research Projects
Agency introduced the challenges of designing self-explanatory AI systems.
(http://www.darpa.mil/program/explainable-artificial-intelligence)
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Many XAI techniques are found in the literature to make
ML systems explainable. Most of the techniques involve a
simpler surrogate model (modeling the changes in the pre-
diction based on input changes) that interprets the internal
mechanics of the underlying model in terms of feature scores,
also employed by popular XAI methods such as LIME [12]
and SHAP [13]. Nevertheless, these techniques compromise
fidelity over interpretability and vice versa [14]. High fidelity
explanations can be as complex as the original MLmodel and
possibly less interpretable, but highly interpretable explana-
tions can be too roughly approximated and possibly inconsis-
tent with the original ML model (low fidelity). For example,
in a binary classification setup, a model with two classes,
P and Q, and an input sample x, the aforementioned tech-
niques try to answer the question ‘‘What evidence assures
the model to predict class for sample instance?’’ with a list
of feature scores as essential factors in the input sample.
This type of answer is only suitable and understandable by
the audience familiar with ML models. For the rest of the
audience, it could be better to answer a bit moulded question,
‘‘Why didn’t the model predict class Q?’’, to get an answer,
one can ask ‘‘What need to be different in input sample x
to predict class Q instead of P?’’. This alternative way of
inspecting outcomes furnishes a set of inputs akin to the
original input and is regarded as a counterfactual mechanism.
This mechanism is endorsed by counterfactual explanations
proposed by Wachter et al. [15], which suggests changes in
features and some human evaluation contradicts this. Coun-
terfactual explanations are appealing because they provide
a piece of actionable information, and have been deemed
acceptable by some legislative bodies like GDPR2 [16]. The
new European regulation on AI also pushes in the same
direction [17].

Counterfactual explanations are considered human-friendly
and actionable; while their explanation format helps to inter-
pret the underlying ML model, they have their own set
of challenges. One of the significant challenges is to gen-
erate actionable counterfactual explanations. For example,
in a bank loan application scenario, an applicant would be
approved if the suggested counterfactual explanation became
true: ‘‘Increase your salary to double, increase your credit
card usage, level up your education, and convert your reg-
ular account to deposit account’’. However, recommended
actions could be impractical for the applicant. Also, such
explanations should be realistic and follow some natural
laws, i.e., age cannot be suggested to decrease, education
cannot be suggested to level-up without an increase of age.
Despite all the issues and challenges therein, the major
limitation of these explanations is no user involvement in
the process of explanation generation, which causes problems
of understanding. The user involvement in providing his/her
feedback to confine the feasible ranges of counterfactuals for

2GDPR stands for General Data Protection Regulation, it is a regulation
and law on data protection and privacy adopted in European Union.

understandable and actionable explanations is of paramount
importance [18]–[20].

Generally, the user raises questions in response to ML
outcomes such as why, why-not, and what-if. This paper
focuses on what-if questions. For example, a what-if question
‘‘What would be the outcome if the input values of some
features get changed’’ entails an inquiry that is solved by
counterfactual explanations in the literature [18], [21]. In this
paper, we consider the need for an explanation and propose an
approach that involves (what-if) user feedback in its process.
To demonstrate the working mechanism of our approach,
we set a user-system interaction environment to record user
feedback in two parts. In the first part, the user is prompted
to provide a list of changeable features with their boundary
ranges in the input sample. This feedback is used by our
method to define a neighbourhood space to mine counter-
factuals. This strategy is theoretically akin to LIME which
samples the neighbourhood based on the instance of interest
with specific proximity. We find this proximity constraint
with user feedback, and the dependence (correlation) among
the features is found based on highly correlated features in
the user feedback. Our approach mines the neighborhood
based on random search and heuristics (i.e., synthetic dataset)
later used to generate the counterfactual explanations. The
well-knownmethod byWachter et al. [15] is used to compute
and minimize the distance between the instance of interest
and the counterfactuals (perturbed samples). Here, it is impor-
tant to note that for some cases user feedback constraints
could end up with small neighbourhood that couldn’t be
enough to represent strong correlation among the features,
nevertheless, our approach iteratively tries to find possibil-
ities for counterfactuals by adopting the actual correlation
among the features in training dataset. In the second part,
the generated counterfactual explanations (counterfactuals’)
are presented to the user (domain expert) to evaluate their
feasibility and actionability (acceptance).

The rest of the paper is organized as follows: Section II
investigates the related work, including methods and frame-
works. Section III introduces the proposed approach for XAI.
Section IV presents some evaluation metrics and results.
Finally, section V draws some conclusions and discusses
future work.

II. BACKGROUND AND RELATED WORK
In the XAI research field, good research is being conducted
to make the systems/models explainable [22]. Researchers
have adopted different strategies to provide explanations,
such as ante-hoc explanations (explainable by design also
known as intrinsic interpretability) and post-hoc explanations
(explanations extracted by doing analysis on outcomes of sys-
tems/models). Post-hoc explanations are further categorized
into significant explanation stages, such as model-specific
and model-agnostic reported by [4], [23]–[25]. Explanation
techniques can be further categorized based on the scope of
an explanation technique such as local and global [12], [13].
Local and global explanations answer to the local instance
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of interest (single instance at a time) and general answer
approximated for all instances of interest, respectively.

A. COUNTERFACTUAL EXPLANATIONS
Feasible and actionable counterfactual explanations
(FACE) [26] is a post-hoc, model-agnostic, and local method
for counterfactual explanation generation. It accounts for the
actionable counterfactual explanations based on a reasonable
degree of change in the feature values. It proposes how
much change in the input sample could lead to the desired
outcomes. It explores multiple paths and then follows some
feasible paths achievable by the shortest distance metric
defined on density-weighted metrics. It constructs a graph on
the data points with weight, density, and condition function.
It updates this graph and applies the shortest distance path
algorithm (Dijkstra’s Algorithm) to find the feasible data
points to generate counterfactual explanations satisfying the
user requirements. Another framework for Diverse Counter-
factual Explanations (DiCE) proposed to generate and evalu-
ate two characteristics: feasibility and diversity. It addresses
the necessary tradeoffs and causal implications to optimize
the generation of counterfactual explanations [27].

Another study about factual and counterfactual explana-
tions computes the length of rules in a decision tree to esti-
mate the conciseness of the generated explanations. It also
calculates the number of counterfactuals and the best mini-
mum distance to the explanation of the facts, to assess the rel-
evance of the counterfactuals [28]. A framework GeCo [29]
relies on a genetic algorithm tuned to prioritize the search for
counterfactual explanations with the least number of changes.
It introduces two new optimizations for the real-time per-
formance of counterfactual generation: first, representation
of candidate counterfactuals; and second, conditional clauses
for the evaluation of the classifier. Similarly, some of the
model-agnostic frameworks stress measuring how well the
actual output of black boxes and output of interpretable
models resemble the local neighbourhood of the instance of
interest to be explained [30]. In most of the above-discussed
approaches and frameworks, the notion of user involvement is
not addressed. It motivates us to design and evaluate the user
feedback into the generation of counterfactual explanations.

B. FACTUAL EXPLANATIONS
The explanation for learning models became highlighted
when Trepan [31] extracted symbolic representation from
trained neural networks. Trepan is a global but model-specific
explainer; it extracts decision trees from neural networks
and approximates the maximization of the ratio for fidelity.
The extracted decision tree is then used as an explanation
to the user. Single tree approximation (STA) [32] presents a
post-hoc and global explanation method that builds a deci-
sion tree with the aim of explaining a black-box random
forest (RF) model. STA was used to reduce the burden of
filtering medical questionnaires, and its approximate deci-
sion tree was found valuable and relevant. RF models are
reasonable in performance but do not provide enough space

for interpretations of their decisions. Another method was
proposed by Hara et al. [33] with a post-hoc strategy to better
explain the output of RF models to users. They formalized
tree ensembles as a simplification problem (model selection
problem) to obtain the simplest representation that is essen-
tially equivalent to the original one. To determine the model
complexity they derived a Bayesian algorithmwith the aim of
approximating complex models to simple models for better
interpretability.

Anchor [34] is amodel-agnosticmethod that produces high
precision rules as explanations. It performs a rigorous search
for mining the best rules. Anchor works on all black-box
prediction models, as it tries to learn the internal behavior
of the model by perturbing the input features and recording
those changes (edge, anchors). When a decision is changed,
it develops the rules, which are later presented to the user as
an explanation.

LOcal Rule-based Explainer (LORE) [35] is a model-
agnostic and local method; it explains the reasons of the
decision taken on a specific instance by employing rules and
counterfactuals. First, it uses a genetic algorithm for sampling
the neighbourhood records for the explanation. Then, it trains
a decision tree on the sampled neighbourhood records of a
given instance; then, it generates an explanation in a unit
of two parts, i.e. decision rules and counterfactuals. LORE
has proved empirically to outperform Anchor in a pool of
benchmark datasets.

GoldenEye [36] is a model-agnostic and global algorithm
that provides an explanation in the form of feature impor-
tance. It finds out the dependencies of interacting attributes
iteratively by using multiple classifiers that learn differently
and accumulates the overall importance of features in groups.
In addition, Measure of Feature Importance (MFI) [37] is
a model-agnostic, local and global explainer, which uses
feature importance to explain predictions. It focuses on the
interaction of features and detects the only features that
impact each prediction. MFI could be applied to any model,
such as non-linear algorithms and neural networks. Likewise,
Local InterpretableModel-agnostic Explanation (LIME) [12]
is a method that can be applied to any ML model. The
primary working mechanism behind LIME is to perturb the
neighbourhood of the instance of interest by creating a dataset
with specific proximity and storing corresponding predic-
tions to learn how the prediction values change on which
features. It tries to interpret every individual model prediction
by using the local inputs and estimating their predictions
around the given actual prediction. It assigns weights to each
feature by calculating and minimizing its underlying loss
function.

SHapleyAdditive exPlanations (SHAP) [13] can be seen as
an extension of LIME. On the one hand, LIME approximates
the feature importance scores by doing regression, on the
other hand, SHAP defines feature scores with so-called shap-
ley values for computing the contribution of features in the
prediction, a strategy given by Lloyd Shapley for cooperative
games to fairly distribute the payoff among players [38].
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SHAP defines three properties for feature attribution i.e.,
local accuracy (the model should be accurate on a local
instance of interest), missingness (this ensures if a specific
feature value is zero, then it earns zero shares in terms of
importance), and consistency (this ensures the model changes
and then the marginal contribution of a feature should remain
consistent). SHAP is coming from cooperative games in
economics, where the additivity of the monetary gain/loss
between players has an intrinsic meaning, in contrast with
ML explainability [39], [40]. In general, SHAP does not guar-
antee to be suitable for feature selection, for this reason, it is
not used in counterfactual explanation methods for filtering
out important features.

Finally, NeuroX [10] is a toolkit to analyze the individual
neurons in neural networks. It facilitates understanding the
interpretation of neurons and models visually. One of the
utilities of this toolkit is that the user can select a specific
neuron from the neural network; then changing the values
associated with the target neuron, it is possible to figure out
its effect on the model accuracy.

III. METHODOLOGY
In this section, we detail the key parts of our method. Our
local model-agnostic explanation method generates a coun-
terfactual explanation based on user feedback. It contains two
key components: (i) generation of counterfactual explana-
tions, and (ii) evaluation of generated explanations. The main
novelty in our approach is to integrate the user feedback in
explanation generation. As a starting point, we extend the
concept of neighbourhood space around the instance of inter-
est given in the LIME method. LIME performs local regres-
sion on a neighbourhood space around the instance of interest
and attempts to explain why some outcome y is predicted
by model m given an input instance x. We use this concept
of neighbourhood space, but in our approach, it is defined
by user feedback to mine the candidate counterfactuals.3

Then, we compute the distance between the actual instance
and candidate counterfactuals (i.e., synthetically perturbed
instances) to discern the counterfactual explanations.

The rest of this section is organized as follows.
Section III-A provides the reader with answers to the follow-
ing questions:
• How does the user feedback define a neighbourhood
space?

• How are the candidate counterfactuals sampled?
• How are the counterfactual explanations generated?

Then, section III-B introduces the experimental setup for the
empirical evaluation to be discussed in section IV. For a better
understanding about the proposed approach, an interaction
diagram is drawn in Fig.1. This diagram illustrates the user
interaction and feedback to compute the candidate counter-
factuals with a use case of the bank loan application.

3In the rest of this paper, the terms candidate counterfactuals and counter-
factuals are used interchangeably.

A. FEEDBACK BASED COUNTERFACTUAL
EXPLANATIONS (FCE)
Throughout this paper, we adopt the notation for ML clas-
sifiers as m : X → Y where m is the model, X is a set
of instances (dataset), and Y is the set of corresponding out-
comes (classes). Taking a single instance x ∈ X as an instance
of interest to be classified as y ∈ Y that is a categorical output
for x could be mapped as m : x → y. Another way to write
it is, m(x) = y, where the test instance includes n features as
x = {x1, x2, x3, . . . , xn}.

The goal of counterfactual explanations is to devise and
suggest the smallest change in the test instance to flip the
current outcome to the desired outcome. To do so, the test
instance is changed to a candidate counterfactual instance
xcf =

{
xcf1 , xcf2 , xcf3 , . . . , xcfn

}
, for the prediction function

m(.) to obtain the desired outcome y′ as m(xcf ) = y′.
Now, we formulate xcf by using user feedback. User feed-

back is split into two parts: (i) a list of those features that
the user admits to being changed (in other words, a set of
feasible input fields), and (ii) feedback providing the ranges
of those desired features. Also, the instance of interest could
contain features belonging to different data formats (specifi-
cally, numerical and categorical features in our case). We can
write

u = unum + ucat (1)

where unum is feedback about the numerical features and
ucat is feedback about categorical features. Further, the
numerical part of the feedback is expanded as unum =
[unumf1

, unumf2
, . . . unumfk ], where unumf1

represents to the first
numerical feature on which user feedback is provided, and
k represents the total number of numerical features with
feedback in the instance of interest. For numerical features,
the user can specify a feasible range for the selected features.
For example, for the first numerical feature it takes the form,
unumf1

= [val1min, val
1
max], where val

1
min is the minimum value

and val1max is the maximum value in the user-provided range.
Hence, the first part of user feedback takes the following
form,

unum =
{
unumf1...fk : [val

1...k
min , val1...kmax ]

}
(2)

Equation (2) represents the user feedback about each numer-
ical feature. Similarly, user feedback about the categorical
features is recorded. User-defined feature values are supposed
to be flipped with value 1 and not with value 0. It takes
the form (3)

ucat =
{
ucatf1...fk : val ∈ {0, 1}

}
(3)

The next target is to compute the neighbourhood space
(i.e., a synthetic dataset) around the instance of interest
for searching candidate counterfactuals. Candidate counter-
factuals xcf , are those that will participate in an evalua-
tion (where the distance from actual instance and validity
of outcome will be analyzed with the approach proposed
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FIGURE 1. An interaction diagram of the proposed approach FCE is illustrated and its process flow is described step by step with a use of bank loan (loan
denied).

in [15]), upon positive evaluation, each instance in xcf could
be recognized as a plausible counterfactual explanation. Here,
we are also focusing on the feature-dependence, realistic-
ness and intrinsic aspect of the counterfactual explanations,
we design some heuristics based on domain knowledge for a
neighbourhood space to mine the candidate counterfactuals.
For example, in the case of a bank loan application, the
counterfactuals should not suggest to decrease Age to get
accepted for the loan. We have restricted it at the level of
user feedback, by unumAge ≥ xAge, where unumAge holds the user
feedback for feature Age, and xAge is the actual age of the user.
Similarly, the feature-dependence is calculated among the
user-provided features (for those features appearing in user
specified range), we accounted for a positive correlation to
address the feature-dependence. Also, some other constraints
are applied to ensure the realisticness and feasibility of coun-
terfactuals at the initial level of explanation generation. The
user-provided ranges help to perturb the instance of interest
within the proximity of defined neighbourhood space. For
each feature, the marginal distribution is estimated from (2)
to generate the data entries. Eventually, synthetic data for
all features are generated, changing one feature at a time,
changing correlated features and their combinations ensuring
that data for only one feature or combination is generated at a
time, keeping others constant. Subsequently, (to harness the
generated data with categorical features), (3) helps to identify
the values of categorical features to be used, either to keep
them the same or to flip in the candidate counterfactuals. The
user feedback u = unum + ucat is essential to generate candi-
date counterfactuals xcf , thus, we can write it as xcf = u.

Generally, good counterfactuals are scrutinized on many
characteristics, we are using two of them. First, they should
produce outcomes as close as possible to the defined or actual
outcomes. Second, they should be as similar as possible to the
actual instance regarding feature values. In the former, the
distance between the outcome of the counterfactual instance
and the actual instance (instance of interest) is pointed out.
For a classification task, it is a distance of 0 or 1 (whether
the predicted class is the same or not). In the latter, the
distance between the feature values of the counterfactual
instance and the actual instance is indicated. Here, we define
and compute a loss function L that accounts for both of
the above aforementioned characteristics, we minimized it
using an optimization algorithm proposed by [15] in (4).
The loss L takes the input parameters: the model m,
an actual instance x, a counterfactual instance xcf (sampled
with (2) & (3)), and the user desired outcome y′. We adopted
this loss function with the motivation that it optimizes
(minimizes) the objective function using gradient descent
to find counterfactuals that are close to the actual instance.
We customized the distance function d(.) defined in L as
follows:

L(m, x, xcf , y′) = (m(xcf )− y′)2 + d(xcf , x) (4)

Then, we used the Manhattan distance weighted with median
absolute deviation for each feature and it is preferred over
other distance metrics, because it provides an absolute value
of distance. The limitation of (4) is not to handle categori-
cal features. It is useful for various distance measurements
where just the attributes that get change in counterfactuals
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are counted to determine proximity to the real instance. It is
easy to interpret the distance d(.) which is represented in (5)

d(xcf , x) =
n∑

f=1

(|xf − x
cf
f |)/MADf (5)

where f represents an individual feature, n total features,
MADf is a median absolute deviation of f feature. The
distance function in (5) calculates the sum of all features
(feature-wise), that gives an absolute value between the actual
instance x and a candidate counterfactual xcf . This process is
repeated for all candidate counterfactuals, and the top-k can-
didates with minimal distance are selected as counterfactual
explanations. Also, the two characteristics of a good coun-
terfactual explanation are significant from (4) as undertaken
above, answering questions: (i) how far the desired result
of the counterfactual instance is from the predefined result;
and (ii) how far the counterfactual instance is from the actual
instance (instance of interest).

B. EXPERIMENTAL SETUP
This section summarizes the main implementation tasks for
data pre-processing, training the models, and generating
counterfactuals.

1) DATA PRE-PROCESSING
In our proposed approach, we have undertaken the Loan
data for a classification problem from Kaggle.4 This dataset
consists of 5000 instances with 14 features (including ID,
ZIP Code). The classification task consists of predicting one
out of two classes: (i) loan granted and (ii) loan denied. The
dataset was found to be unbalanced (9.6% loan granted and
91.4% loan denied).We first balanced the dataset by using the
class balancing technique SMOTE. The data for imbalanced
class ‘‘loan granted’’ was increased from 10% to 35% of
the whole data. We applied few heuristics to substantiate
the separation line of the generated cases from the opposite
class cases. Still, there could be a bit of chance of closeness
between the generated and opposite class cases, and further
discussion on this aspect is not included considering out of
the scope of this work. We drop the ID and ZIP Code fea-
tures. The remaining numerical features are Age, Experience,
Income, Family, Education, CCAvg (Credit card avg. usage),
Mortgage; and categorical features are Securities account,
CD account (current deposit account), Online (account is
online or not) and Creditcard (either have credit card or
not); and the Personal Loan is the output class (either loan
granted or denied). The accuracy of classification models was
improved after balancing the data.

2) IMPLEMENTATION DETAILS
We implemented the proposed approach in Python language
and used Google Colab’s5 useful utility of Forms that allows

4https://www.kaggle.com/sriharipramod/bank-loan-
classification/metadata

5https://github.com/msnizami/FCE/blob/main/FCE.ipynb

TABLE 1. Accuracy and F-measure scores of support vector
machines (SVM) and random forest (RF) on loan data.

the user to interact at runtime. We employed two classifiers:
Support vector machines (SVM) and Random Forests (RF);
we applied default configuration parameters for each model.
Then, we trained and tested both classifiers to measure their
goodness. We used 10-fold cross validation. The training,
average cross-validation for 10-folds, and testing scores are
presented in Table 1, where RF is more accurate as compared
to SVM.

We have designed the form to record the user feedback
as a response to the model prediction. The form includes a
what-if question that is handled with counterfactual expla-
nations. The layout of the form includes selecting features
and respective feature ranges that users can modify to obtain
desired results. This user feedback is filtered through some
constraints, in ucat , user-selected features are converted into a
binary format, and we store 1 against the selected features and
0 for the rest of categorical features (meaning 1 to be changed
and 0 to keep constant). Similarly, in the case of unum,
we saved it as a key-value mapping, keeping user-selected
features as keys and their respective range list as values.

3) EXAMPLE CASE WITH PROPOSED METHOD
Here, we provide readers with an illustrative example regard-
ing how our proposal works in practice. Let us suppose the
actual instance x is,

x = {Age = 62,Experience = 36, Income = 183,

Family = 2,CCAvg = 3.4,Education = 3,

Mortgage = 0, SecuritiesAccount = 0,

CD− Account = 0,Online = 0,Creditcard = 0}

and unum is,

unum = {unumExperience : [36, 45], u
num
Income : [183 : 200],

unumCCAvg : [3.4 : 7], u
num
Mortgage : [0 : 60]}

where ucat is,

ucat =
{
ucatCD−Account : 1, u

cat
CreditCard : 1

}
After getting user feedback, candidate counterfactuals are
generated (synthetic data) by perturbing x within the provided
space. One example of a candidate counterfactual is repre-
sented as

xcf = {Age = 62,Experience = 40, Income = 195,

Family = 2,CCAvg = 6.39,Education = 3,

Mortgage = 55, SecuritiesAccount = 0,

CD− Account = 1,Online = 0,Creditcard = 1}
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In this way, the distance is computed between x and xcf by
minimizing the loss function presented in (4). We recorded
user feedback on the generated explanations, and then the
user is provided with generated counterfactual explanations.
It is done dynamically on runtime and only those candi-
date counterfactuals are selected as counterfactual explana-
tions that fulfill the criterion of good explanations mentioned
in section III-A. Multiple counterfactual explanations are
generated for a specific instance and the quality of gener-
ated counterfactual explanations is evaluated and discussed
in section IV.

IV. RESULTS AND EVALUATION
Our approach has reported encouraging results with the
experimental setup previously described. Unfortunately,
there is no universal metric to measure the quality and effec-
tiveness of explanations. In the recent literature regarding
counterfactual explanations, different evaluation metrics are
used. We have employed two evaluation metrics, i.e., target-
class-validity and continuous-proximity, proposed by [41].
Also, for evaluation purposes, we collected and carefully
analyzed user feedback for N = 100 test instances. Then,
the proposed approach generates counterfactuals for the test
instances under study, and the related explanations were eval-
uated on the aforesaid evaluation metrics, also analyzed with
the authors’ domain knowledge.
Target-Class-Validity: The percentage of the generated

counterfactuals whose predicted class by ML classifier is the
same as the target class also represented as follows:

N∑
i=1

K∑
j=1

[
m(xcfi,j ) = y′

]
/N ∗ K (6)

where we tookN = 100 test instances and generatedK coun-
terfactuals for each instance (K depends on user feedback),
y′ is target class, X cf is the set of candidate counterfactuals.
The target-class-validity was recorded 84% for the above
N user feedback-based test instances. Equation (6) is advan-
tageous because it helps to determine the percentage of valid
counterfactual explanations. In this work, the focus was on
the generation of counterfactuals based on the user feedback,
and we attempted to compute those counterfactuals which are
valid counterfactuals (good explanations).
Continuous Proximity: The proximity for numerical fea-

tures is calculated as the average distance between xcf and
test instance x in units of median absolute deviation for each
feature, represented mathematically as follows

N∑
i=1

K∑
j=1

M∑
f=1

(xcfi,j,f − x
f
i,j,f /MADf )/N ∗ K ∗M (7)

where f is a specific feature, M represents the total number
of numerical features, K represents the number of generated
counterfactuals, andN represents the number of test instances
taken for evaluation. This measure of proximity could be
compared from Table 2, where the median absolute devia-

tion (MAD) for the actual instance and the generated counter-
factuals are presented feature-wise. It could be observed that
the generated counterfactuals exhibit reasonable proximity.
The lower the distance, the better the proximity and feasibil-
ity. By looking deeply with domain knowledge to cases under
study, the values of income andmortgage reflected significant
difference between the actual test instances and the generated
counterfactuals as compared to other features. The behavior
of MAD difference is regular for most of the features, despite
the income and mortgage. The income and mortgage show a
marginal difference between the actual data and the generated
counterfactuals data. The reason behind this behavior could
be the numerical value threshold and the user-chosen values.
Since, in the real dataset, these feature values deviated largely,
such as high income (a businessman who was granted the
loan), but in the user feedback, the provided values were
normal (moderate income, the users who provided feedback
belong to average income class of population).
The example test instance (of bank loan) exemplified in
section III-B3 is provided with a counterfactual explanation
in Table 3. The suggested changes are confined to only
user-selected features and within the user-defined ranges.
Similarly, another test instance is presented in Table 4, for
which three counterfactual explanations are generated with
user feedback. Our results are encouraging to complement the
proposed approach of counterfactual explanations with user
feedback. Still, many aspects of good counterfactuals need to
be explored in the future work, as we will discuss in the next
section.

A. EXPERT ANALYSIS FOR COUNTERFACTUAL
EXPLANATIONS
The procedure of analysis for selecting and validating the
generated counterfactuals was done manually: (i) the gener-
ated counterfactuals should be in agreement with user feed-
back, and (ii) the difference in MAD between generated
counterfactual and actual instance having the desired label.
The first criteria for the validation of actionability ensures
the counterfactuals should be in the range of user-provided
ranges and produce the desired results. This analysis resulted
in 84% of the success rate for the generated counterfactuals
with the domain expert’s manual validation for the N test
instances, also depicted mathematically in (6). The second
criteria was to select the most suitable and realistic counter-
factual by the domain expert, choosing the one having the
lowestMAD (proximity). For example, if the user specifies to
generate 10 counterfactuals for a single test instance then the
one having the lowest MAD is chosen, also, presented math-
ematically in (7). The numeric results of evaluation metrics
for proximity are presented in Table 2. If the calculated MAD
for the generated counterfactuals was in the affordable range
(an average of test and train instances all having the same
desired class label), then it was accepted, otherwise rejected.
This evaluation on a sample set of test instances was
satisfactory in agreement with the computation of results
of (6) and (7) for the whole test set. The manual evaluation
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TABLE 2. Median absolute deviation between actual test instances and generated counterfactuals.

TABLE 3. Counterfactual explanation for the test instance of loan data described in section III-B3.

TABLE 4. Feedback based counterfactual explanations for a test instance with three counterfactuals.

is a time consuming effort. All the N test samples were
evaluated over a span of couple of days by dedicating few
hours daily. The 16% of counterfactuals couldn’t be qualified
as actionable, in other words these counterfactuals were not
in agreement with user feedback. This depends on fine-tuning
of the parameters of user feedback, and improvement could
be replicated with flexible parameters and their values.

V. DISCUSSION AND CONCLUSION
The approach for counterfactual generation that is presented
in this paper has both benefits and drawbacks. The main
added-value of using user feedback around the instance of
interest is that the user always goes with less number of
features to be changed what reduces computational cost
(complexity). In addition, other counterfactuals and feature
attribution methods do not care about causation (correlation
in case of LIME) during the feature perturbations. However,
in the case of user feedback, chances are higher that a causal
relation will hold because it is human nature to follow some
correlation in actions. For example, it is intuitive that if the
user can increase the income, then he/she can increase the
average credit card usage and increase the mortgage too.
Also, if he/she cannot increase the income, he will indeed not
select CCAvg and Mortgage features in the user feedback to
be changed.

Counterfactual explanations give flexibility to the user
by having a contrast in prediction. Furthermore, they pro-
vide the user with some actionable suggestions to obtain
the desired outcomes. However, counterfactuals may also
mislead the user sometimes. For example, in the case of a
loan application, presenting some counterfactuals, such as
‘‘double the income and increase the mortgage value to very
high’’, is not realistic. This is an issue associated with all
approaches/methods devised for counterfactual explanations.
The advantage of our approach is that it minimizes the risk

of misleading counterfactuals by taking user feedback into
account and focusing on the defined criteria. In other words,
we can deem our approach to be user-centric as the coun-
terfactual explanations are actionable and human-friendly.
In addition, we analyzed the generated counterfactual expla-
nations with domain knowledge and, in some cases, it has
been observed no counterfactuals qualified as counterfactual
explanations. This is due to the fact that the user feedback
may be too constrained and (may) not provide enough space
to compute the candidate counterfactuals that can flip the
outcome. The issue of no counterfactuals highlighted above
for counterfactual approaches with user feedback needs to be
further investigated by devising learning-related constraints
of the underlying prediction model, ensuring the generation
of valid and effective counterfactual explanations.

In this paper, we have spotlighted the key aspect of an
explanation (i.e., user-involvement) that has not been inves-
tigated in the recent literature. We presented an approach to
counterfactual explanations with user feedback for XAI sys-
tems. The current state-of-the-art methods in the field of XAI
have been described, and the problems therein are identified
with a potential solution to enrich counterfactual generation
with user involvement. The presented approach is unique and
novel, as it contributes to the body of knowledge with user
feedback-based counterfactual explanation method. As far as
we know, no work in the literature has addressed this issue
yet. This work paves the way towards user-feedback-based
XAI that will assist researchers of XAI systems to explore
and exploit different techniques based on user feedback.

The future work will extend the user involvement in the
explanation generation process by focusing on the research
question—to what extent does the user appreciate the pre-
sented explanation? In the current work, as the presented
features/facts in the explanation fragment are relevant and
known to the user, it is assumed that the user would perceive
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the explanation to an acceptable extent. If new knowledge is
needed to be present in the explanations, there must be an
evaluation criterion to measure it, and we envisage a frame-
work as a future line of action. Regarding how to increase
the understanding of the user about the explanation, it could
be targeted with the help of a gaming environment, where an
agent can initiate a dialogue with the user to answer the user
questions [42], to evaluate the understanding (under defined
and designed parameters of evaluation). Moreover, to mea-
sure the goodness of explanations, a formal new evaluation
criterion needs to be developed and verified with the help
of interacting agents. For example, one of the evaluation
criteria for the agents may be supported by a model checking
framework to account for the trustworthiness of explanation
on the grounds of computational tree logic [43]. Another
perspective of our work where research could be conducted is
to develop a criterion for the extent of information to reveal in
the explanations. It is worth noting that some researchers have
already highlighted the potential threats to those explanation
systems in which the algorithms or models are subjected to
be made transparent, providing enough space for intruders
to manipulate the systems [44]. Hence, there is a need for
comprehensive research keeping in view the privacy/security
measures of such explanatory systems.
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