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Abstract

Natural resource stocks are drastically shrinking and the contempo-
rary debate on depletion of reserves highlights their crucial role over
time. This paper deals with the management of exhaustible resources
when recycling and extraction are employed, as well as the short-term
effects of the economic transition towards circularity on consumption
and welfare.

Mathematical modeling may support effective plans for maximizing
social welfare and protecting the environment. Concerning the produc-
tion of a certain good, an optimal control model is studied to allocate
labor between mining and recycling over a finite time horizon. A suit-
able scrap value function allows for reducing waste and maintaining
natural stock in the forthcoming future. Well-posedness of the prob-
lem is proved and some qualitative features of the optimal solution are
stated.
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1 Introduction

The international authorities’ agenda focuses on sustainability and the circular
economy since it aims to manage waste, to safeguard natural resources, and
to encourage production by employing recycled and second-market materials.
The resources that are exhaustible or depletable are most at risk. They are
produced by natural processes, but their creation rate is extremely slow on hu-
man timescales; as a result, this kind of resource is classified as non-renewable
(cfr. [3], [7], [8], [9])). The overwhelming majority of non-renewable resources
are crucial components of industrial production; but their natural stock is al-
ways fixed and finite, making it impossible to fully meet the demand for these
resources on the world market. In this respect, a key challenge for a transition
to sustainability and circular economy is the achievement of effective waste
management and recycling. In this framework, we focus on both economic
and environmental issues. Indeed, we aim to maximize the utility that results
from consumption; at the same time, we concentrate on an environmental
issue meant to strike a balance between the preservation of the natural re-
source, whose depletion could cause economic and environmental degradation,
and the reduction of waste accumulation through recycling. These concerns
are addressed by employing classical optimal control theory to optimize social
welfare in terms of both current utility and future environmental damages. The
subject of optimal control models dealing with recycling of natural resources is
a major issue in the literature. Several authors in this regard focus primarily
on municipal waste management and recycling processes (for instance, see [1],
[2], [4]).

In this framework, we deal with a specific optimal strategy to control the
use of both non-recycled and recycled depletable resources under a finite time
horizon perspective. We develop an original model starting from the approach
in [5], where the economy is studied by analysing its steady state over the
infinite time horizon. Our original assumption of a fixed and finite temporal
threshold is driven by United Nations and European Union rules which de-
mand that certain environmental targets be met by a certain date in order to
implement the ecological transition. However, taking into account a finite time
horizon also makes it possible to investigate the short-term dynamics of the
management of non-renewable resources and the corresponding recyclability.
Rapid solutions might help the ecological transition and lessen environmental
harm in the near future.
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2 Production dynamics and optimal program

We assume that a final consumption good is produced by employing a non-
renewable resource which is purchased from two different sectors. On one
hand, the recycling sector exploits the existing waste stock and obtains the
resource itself by a recycling process; on the other hand, the non-recycling
sector is related to a conventional production of the depletable resource. Both
recycled and non-recycled inputs are employed for the production of the final
good C over a time horizon [0, T ], with given length T > 0. In this respect, the
production depends on the non-recycled material denoted by V (t) and on the
recycled material R(t), which is recovered from waste, according the following
CES function

C(t) = [(θV V (t))ρ + (θRR(t))ρ]1/ρ , (1)

where ρ, θV and θR are time-invariant, with 0 < θV , θR < 1. As usual, pa-
rameter ρ is related to the elasticity of substitution between non-recycled and
recycled materials: due to the fact that the quality of recycled and non-recycled
resources are different, we assume 0 < ρ < 1 meaning that the quality of the
non-recycled input exceeds the quality of the recycled one.

As a further assumption, the considered economy is endowed with a fixed
amount of labor L > 0, which is devoted to get both inputs. We denote by l(t)
the labor demand employed in the conventional sector at every time t, thus
L − l(t) corresponds to the labor devoted to recycling. Our aim consists of
efficiently allocating l(t) in the admissible set

A = {l : [0, T ]→ R : 0 ≤ l(t) ≤ L, ∀t ∈ [0, T ]},

under the assumption of constant returns to scale in both non-recycling and
recycling sectors such that

V (t) = mV l(t), R(t) = mR (L− l(t)), (2)

with fixed labor productivities mV > 0 and mR > 0. Concerning the non-
recycled input, it is related to the natural stock S(t) of resource whose dynam-
ics evolves as

Ṡ(t) = −mV l(t), S(0) = S0, (3)

where S0 > 0 represents the initial amount of the available non-recycled input.
Furthermore, the consumption process generates waste which can be partially
saved and recycled for the production. We denote by W (t) the cumulative
amount of waste at any time t and suppose that the recycling process and the
waste production occur at the same time. Let γV and 1 − γR be the waste
generation rate of the non-recycled and the recycled materials, respectively,



416 S. Bertarelli, C. Lodi and S. Ragni

under the assumption that 0 < γV , γR < 1. Then waste accumulation evolves
according to the following equation

Ẇ (t) = γV mV l(t)− (1− γR)mR (L− l(t)), W (0) = W0, (4)

where W0 > 0 is the initial stock of recyclable waste inherited at t = 0 from
the past. By integration of both (3) and (4) over the whole time horizon, we
get

S0 −mV LT ≤ S(t), W0 − (1− γR)mR LT ≤ W (t).

Thus, we suppose that time horizon length T satisfies the following condition

T ≤ min

{
S0

mV L
,

W0

(1− γR)mR L

}
, (5)

which assures S(t) ≤ 0 and W (t) ≥ 0 for any t ∈ [0, T ].
In this framework, a crucial issue is achieving the maximum welfare benefit

from economic activities provided that the waste recycling capability increases
and the resource stock is maintained for future time. Thus, the social planner
program aims to efficiently allocate a restricted amount of labor for maximizing
the social welfare thorough the objective function

J(l) =

∫ T

0

e−δtU(C(l(t))) dt+ ν e−δTS(T )− µ e−δTW (T ), (6)

where δ > 0 represents the constant discount rate over time and

U(C(l(t))) =
[C(l(t))]1−σ

1− σ
=

[(θVmV l(t))
ρ + (θRmR(L− l(t)))ρ](1−σ)/ρ

1− σ
,

is the consumers’ utility deriving from the consumption of the final produced
good. The scrap function depends on the weights ν, µ > 0 and models the fu-
ture environmental damage related to both recycled and non-recycled stocks.
Actually, the first term ν e−δTS(T ) can be interpreted as the value of an integral
of the utility flow related to the future damage associated to the exhaustible
resource employment, starting from time T with a stock S(T ). As a counter-
part, the second term −µ e−δTW (T ) can be thought as the value of an integral
of the future utility flow related to the future damage from waste disposal site
starting from time T with a waste stock W (T ).
Under assumption (5), the optimal control model consists of searching for a
labor l∗ ∈ A such that

J(l∗) = max
l∈A

J(l), (7)

subject to state equations (3) and (4).
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3 Optimal labor allocation

An optimal strategy for allocating the labor between the sectors can be char-
acterized by defining the current value Hamiltonian as

H(l, S,W, ϕV , ϕR) =
[C(l)]1−σ

1− σ
+ϕV [−mV l]+ϕR [γVmV l−(1−γR)mR(L− l)],

where the costate variables ϕV and ϕR are the shadow prices of the non-
recycled resource and recyclable stock, respectively. Due to the Pontryagin
Maximum Principle, an optimal solution l∗(t) together with state variables
S(t), W (t) and costate ones ϕV (t), ϕR(t) must satisfy the following optimality
necessary conditions:

(i) l∗(t) maximizesH(l(t), S(t),W (t), ϕV (t), ϕR(t)), provided that l∗(t) ∈ A;

(ii) the state dynamics is modelled by (3)-(4), where l(t) is replaced by l∗(t),
and costate variables are continuous functions with piecewise continuous
derivatives satisfying the following equations

ϕ̇V (t) = δϕV (t), ϕV (T ) = ν e−δT ,

and
ϕ̇R(t) = δϕR(t), ϕR(T ) = −µ e−δT .

By integration, we obtain

ϕV (t) = νe−δ(2T−t), ϕR(t) = −µe−δ(2T−t), (8)

for all t ∈ [0, T ]. We notice that ϕV (t) > 0 since the non-recycled
resource stock is a “good” for the society, so that the larger the stock
of non-recycled resource, the better is for the society with the aim to
preserve Earth resources. On the other hand, ϕR(t) < 0 since the waste
stock may represent a ”bad” for the society as it harms the environment.

In order to maximize the Hamiltonian function, we focus on the derivative

∂H

∂l
= C(l)1−σ−ρ ·Υ(l)− Φ(ϕV , ϕR),

where we set Φ(ϕV , ϕR) = ϕV mV −ϕR [γVmV + (1− γR)mR] with ϕV and ϕR
evaluated by (8), and

Υ(l) = (θV mV )ρlρ−1 − (θRmR)ρ(L− l)ρ−1.

It is not so difficult to verify that ∂H/∂l is a continuous function with respect
to l such that ∂H/∂l → +∞ when l → 0+ and ∂H/∂l → −∞ when l →
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L−. Then, there exists a given labor level l∗ ∈ A where ∂H/∂l nullifies.
Furthermore, the second derivative is given by

∂2H

∂l2
= [C(l)]1−σ−2ρ

(
−σ [Υ(l)]2 + (ρ− 1)L2[θV mV θRmR]ρ[l(L− l)]ρ−2

)
.

Due to the fact that ∂2H/∂l2 < 0, then Hamiltonian function is strictly concave
in l; therefore, l∗ represents a maximum value for H. Thus, by evaluating S(t)
and W (t) the solutions of (3)-(4) where l(t) is replaced by l∗(t), we obtain that
(l∗, S,W, ϕV = νe−δ(2T−t), ϕR = −µe−δ(2T−t)) satisfies the Maximum Principle
statements (i)-(ii). It follows that l∗ constitutes an optimal solution to problem
(7), according to well-known and classical results of optimal control theory (see
for instance Theorem 4.6.4 in [6]). In addition, since the Hamiltonian function
is strictly concave in l, then it can admit no more than one maximum value:
as a conclusion, there exists a unique optimal labor l∗ ∈ A solving problem
(7). In this way, the optimal control model well-posedness is stated.

4 Waste stock accumulation

In the transition towards circularity, a crucial issue is related to understanding
whether the waste stock accumulates and increases or not. In this respect, we
note that Ẇ (t) ≥ 0 in the case when the optimal labor allocation exceeds the
level defined by the following threshold

L =
(1− γR)mR

γVmV + (1− γR)mR

L. (9)

In other words, W (t) increases over a given time interval if l∗(t) ≥ L; on the
other hand, W (t) is decreasing in time in the opposite case. Therefore, the
comparison between the optimal labor l∗ and L allows for establishing waste
accumulation dynamics over time. More precisely, it is possible to consider the
following two different situations.

(a) Under the assumption that

Υ(L) = (θV mV )ρL
ρ−1 − (θRmR)ρ(L− L)ρ−1 > 0,

we set

τ =
[C(L)]1−σ−ρ Υ(L)

νmV + µ(γVmV + (1− γR)mR)
> 0,

and define t = 2T + ln(τ)/δ. For any t ≤ t we get

∂H

∂l
(L, S(t),W (t), ϕ1(t), ϕ2(t)) > 0;
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therefore, due to the fact that ∂H/∂l is decreasing in l, the previous
inequality implies l∗(t) ≥ L. Starting from this argument, the following
different statements hold:

– If τ ≤ e−δ2T , then t ≤ 0; it follows that Ẇ (t) ≤ 0 over the whole
time horizon and the waste stock reduces at every time.

– If e−δ2T < τ < e−δT , then 0 < t < T ; as a consequence, we obtain
Ẇ (t) ≥ 0 for t ∈ [0, t]. It implies that waste accumulates until t,
after that waste reduces for the remaining time in ]t, T ].

– If e−δT ≤ τ , then T ≤ t. Thus, Ẇ (t) ≥ 0 and waste accumulates at
any time.

(b) In the opposite situation, the assumption

Υ(L) = (θV mV )ρL
ρ−1 − (θRmR)ρ(L− L)ρ−1 ≤ 0,

yields l∗(t) ≤ L for all t ∈ [0, T ], since ∂H/∂l is decreasing in l and

∂H

∂l
(L, S(t),W (t), ϕ1(t), ϕ2(t)) ≤ 0.

It follows that Ẇ (t) ≤ 0 over the whole time horizon; thus the waste
stock reduces over the whole horizon [0, T ].

5 Future purpose

This work represents the starting point for a deeper study where the social
planner aims to allocate labor in an efficient way so that the social welfare is
maximized by accounting for the environmental damages both in the current
time horizon and in the forthcoming future. The resulting optimal control
model is more complicated, and its well-posedness is more difficult to analyze.
As a future purpose, we also aim to apply this approach as a predictive tool
in order to investigate the management of depletable resources, such as timber
materials and biofuels, in the framework of the sustainable transition.
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