
1. Introduction
The paleoceanographic “biogenic bloom (BB)” term refers to a widespread increase in marine biogenic primary 
production, expressed as increased sedimentation rates of biogenic components (CaCO3, SiO2, P, Ba) in deep-sea 
sediments deposited during the late Miocene-early Pliocene (ca. 8.0-4.6 Ma) in upwelling areas of the Indian, 
Pacific, and Atlantic oceans (Anderson & Steinmetz, 1981; Dickens & Owen, 1999; Farrell et al., 1995; Grant 
& Dickens, 2002; Lyle et al., 2019; Peterson & Backman, 1990; Zhang et al., 2017). At low to mid latitudes, 
nutrient supply typically limits surface primary productivity (and resulting biogenic accumulation), leading many 
workers to explain the BB by enhanced nutrient delivery to the photic zone. A root problem has been (Dickens & 
Owen, 1999): do observations reflect greater upwelling at certain locations (and hence redistribution of nutrients 
from the subsurface ocean) or higher overall nutrient concentrations in the ocean (and hence excess delivery from 
riverine and other sources)? A series of studies using bulk and foraminiferal calcite δ 13C and δ 18O as paleocean-
ographic tracers have argued for intensified wind-driven upwelling driving the enhanced primary productivity 
along the Pacific Equator during the BB (Pisias & Prell, 1985; Pisias et al., 1995; Reghellin et al., 2015, 2020; 
Shackleton & Hall, 1995). The remarkable correlation of bulk stable isotope over time across a broad ocean-
ographic region in the eastern equatorial Pacific (EEP), i.e., broader than the inferred zone of wind focused 
upwelling, however, hint at a rather complex system, likely involving several factors combining to generate the 
observed geochemical patterns (Reghellin et al., 2020). To gain a better chance of understanding the mechanistic 
drivers of this inferred strengthened upwelling greater spatial coverage of paleoceanographic records is needed. 
Focusing on that goal, this study adds new perspectives from an IODP cored at 5° north of the Equator and to the 
west of the EEP, allowing us to further constrain the extent of the upwelling signals and their evolution through 
the late Miocene to early Pliocene.

1.1. Eastern Equatorial Pacific Paleoceanography Through the Neogene: Perspectives From Bulk 
Carbon and Oxygen Stable Isotopes

The EEP is defined as the ocean area between 15°N and 15°S latitude, and between 150°W longitude and the 
coasts of Central and South America (Figure 1). It is a primary source of CO2 to the atmosphere (Takahashi 
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et al., 2009) and an important area of ocean-atmosphere heat exchange (Kosaka & Xie, 2013; Linsley et al., 2015), 
as a consequence of the wind-driven equatorial upwelling that brings cold, CO2, and nutrient-rich subsurface 
waters to the surface (Fiedler & Lavín, 2017; Pennington et al., 2006). Understanding its evolution through the 
Neogene is thus intricately linked to and important for understanding how Earth's climate and ocean subsystems 
operate under warmer and cooler than modern conditions. In the EEP, the BB is generally linked to (a) cooler 
sea-surface temperatures (SSTs) along the Equator, (b) expanded meridional (north-south) sea surface temper-
ature (SST) gradients, and (c) higher rates of surface ocean biological productivity (Farrell et al., 1995; Lyle & 
Baldauf, 2015; Lyle et al., 2019; Pisias et al., 1995; Reghellin et al., 2015; Rousselle et al., 2013; Seki et al., 2012; 
Shackleton & Hall, 1995; Zhang et al., 2017).

Central to the hypotheses and methodology advocated, here, is the study of Shackleton and Hall (1995), who 
analyzed the carbon and oxygen stable isotope composition, δ 13C and δ 18O respectively, of bulk carbonate depos-
ited at Ocean Drilling Program (ODP) Leg 138 sites (Pisias et al., 1995) over the last 10 Ma (Figure 1). Their δ 13C 
records display high amplitude variation over short depth/time intervals that are correlative across sites, both “on” 
and “off” the Equator (Shackleton & Hall, 1995; Figure 2). The δ 18O records also show high amplitude variation 
correlative across sites but with two key differences for on-Equator versus off-Equator sites. First, sediment bulk 
δ 18O values at on-Equator sites were generally higher than those from at off-Equator sites for the entire 0–10 Myr 
period. Second, between about 8 and 4 Ma, the δ 18O gradient between on-Equator and off-Equator sites is espe-
cially large, with on-Equator sites having ca. 1‰ higher δ 18O values. Shackleton and Hall (1995) attributed the 
expanded δ 18O gradients to larger SST gradients between on-Equator and off-Equator sites, with lower (cooler) 
SST along the Equator and higher (warmer) SST off the Equator. The expanded SST gradient was explained by 
an intensified wind-driven circulation during the late Miocene, driving a stronger and more Equator-focused 
equatorial upwelling (Pisias & Prell, 1985; Pisias et al., 1995; Shackleton & Hall, 1995). This idea is supported 
by the large increase in biogenic sedimentation at on-Equator sites and, to a lesser extent at off-Equator sites, 
interpreted as reflecting an expanded high-productivity zone (Figure 2; Lyle et al., 1995; Pisias & Prell, 1985; 

Figure 1. Location of the cored sediment sequences considered in this study and their oceanographic and bathymetric 
settings in the eastern equatorial Pacific (EEP). (a) Modern mean annual sea surface temperature (SST) and (b) bathymetry. 
The temperature map is modified from Reghellin et al. (2020). Bathymetric data and map are from GEBCO Compilation 
Group (2019). Backtracked sites location at 7 Ma and site migration paths are from Weinreich and Theyer (1985) (Site 
573), Pisias et al. (1995) (Sites 851, 852, and 853), and Pälike et al. (2010) (Sites U1335 and U1338). The dashed black box 
represents the area of modern strong wind-driven equatorial upwelling, located at about ±2.5° latitude of the Equator and 
west of the Galapagos Islands (Fiedler & Lavin, 2017).
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Pisias et  al.,  1995; Shackleton & Hall,  1995). These observations and interpretations are consistent with BB 
conditions in the EEP.

However, other sets of proxy data have resulted in very different interpretations of late Miocene-early Pliocene 
conditions in the EEP resulting in considerable community debate (Table 1). The key alternative idea is that under 
the ca. 2–3°C warmer-than-modern global conditions of the early Pliocene (ca. 5.3-3.5 Ma), the EEP was charac-
terized by higher SSTs and weaker equatorial upwelling (Ford et al., 2015; Ravelo, 2010; Wara et al., 2005). This 
scenario is compared to a “permanent El Niño” state, also known as “El Padre” (Ford et al., 2015), where low 
meridional and weak zonal SST gradients, similar to the conditions of a modern El Niño event, are sustained over 
much longer time intervals. This interpretation is based on analyses of δ 13C, δ 18O, and Mg/Ca ratios measured 

Figure 2. Comparison of relevant published bulk carbonate δ 13C and δ 18O and sedimentation rate records from the 
eastern equatorial Pacific (EEP) for the last 7 Ma. This includes data at on-Equator Sites 573 (Reghellin et al., 2015), 851 
(Reghellin et al., 2020; Shackleton & Hall, 1995), and U1338 (Reghellin et al., 2015) and data at off-Equator Sites 852 
and 853 (Shackleton & Hall, 1995). The Shackleton and Hall (1995) data are displayed as bars because samples represent 
integrated values over core sections, typically 1.5-m length. The vertical gray line represents the end of the BB as suggested 
by geochemical records at sites examined in this study. Ages for data at Sites 851 come from Reghellin et al. (2020). Ages 
for data at Sites 573 and U1338 come from Reghellin et al. (2015). Ages for data at Sites 852 and 853 come from Shackleton 
et al. (1995). Gray bars represent intervals with bulk δ 13C and δ 18O data at Site 851 (Reghellin et al., 2020). Note the 
coherency of δ 13C records over the last 7 Ma and the ca. 1‰ δ 18O offset between on-Equator and off-Equator Sites during the 
late Miocene-early Pliocene (ca. 4–8 Ma).
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on planktonic foraminifera tests, and alkenone ratios (U kʹ
37; Beltran et al., 2014; Ford et al., 2012, 2015; Lariv-

iere et al., 2012; Lawrence et al., 2006; Ravelo, 2010; Ravelo et al., 2006; Seki et al., 2012; Steph et al., 2010; 
Wara et al., 2005). Permanent El-Niño-like conditions implying strong thermal stratification is opposite to the 
stronger upward mixing and surface fertilization scenario invoked to explain the high export production of the 
BB, and the two interpretations seem incompatible (Lea, 2014). Further studies proposed a decoupling between 
ocean temperature and upwelling intensity to explain the divergent scenarios derived from different proxies (Lyle 
& Baldauf, 2015; Zhang et al., 2017). According to these studies the increased upwelling is compatible with 
higher water temperatures because of: (a) the warmer-than-modern water column and a shallower thermocline 
during the late Miocene (Zhang et al., 2017) or (b) warmer-than-modern extratropical waters that fueled the EEP 
upwelling system during BB time (Liu et al., 2019).

However, there remain uncertainties in proxy temperature data and difficulties in calculating temperature gradi-
ents using heterogeneous proxy datasets. Moreover, these divergent scenarios are partly resulting from four basic 
challenges that hamper paleoceanographic investigations in the EEP. First, the region is highly dynamic with 
steep zonal (east-west) and meridional gradients in many ocean properties, such as SST, biogenic particle produc-
tion, and sedimentation (Barber & Chávez, 1986; Kessler, 2006; Trenberth & Caron, 2000), and CO2 air-sea 
fluxes (Kozyr, 2008; Takahashi et al., 2002, 2009). These properties can change abruptly over quasi-periodic 
semidecadal cycles because of changes in ocean and atmosphere circulation (Holbrook et al., 2012). A second 
problem relates to bathymetry, with depths roughly increasing westward (Figure 1). Most of the region lies below 
4,000 m water depth and hence is below the lysocline, where the rate of calcite dissolution increases rapidly 
(Farrell & Prell, 1989; Farrell et al., 1995; Lyle, 2003; Lyle et al., 2019). This implies that biogenic carbonate 
tests, especially those of planktonic foraminifera (importance proxy signal carriers), may be biased by dissolution 
and recrystallization (Lyle et al., 2019; Pälike et al., 2012; van Andel et al., 1975). Third, tectonic changes during 
the late Miocene-early Pliocene include closure of the Panama seaway, restriction of the Pacific-Indian Ocean 
Indonesian throughflow and uplift of the Andes Mountains, each of which have potential to impact global ocean-
ography (Auer et al., 2019; Brierley & Fedorov, 2016; Garzione et al., 2008; O'Dea et al., 2016; Schneider, 1998; 

Reference Proxy type Paleoceanographic scenario

Shackleton and Hall (1995) Bulk carbonate δ 13C and δ 18O Intense upwelling/cool SST

Wara et al. (2005) Foraminifera δ 13C and δ 18O, Mg/Ca Weak upwelling/warm SST

Lawrence et al. (2006) Foraminifera Mg/Ca, U kʹ37 Weak upwelling/warm SST

Ravelo et al. (2006) Foraminifera Mg/Ca, U kʹ37 Weak upwelling/warm SST

Dekens et al. (2007) Foraminifera Mg/Ca, U kʹ37 Intense upwelling/warm SST

Nathan and Leckie (2009) Foraminifera δ 13C and δ 18O Fluctuations between intense and weak upwelling

Ravelo (2010) Foraminifera Mg/Ca, U kʹ37 Weak upwelling/warm SST

Steph et al. (2010) Foraminifera δ 13C and δ 18O, Mg/Ca, U kʹ37 Weak upwelling/warm SST

Ford et al. (2012) Foraminifera δ 13C and δ 18O, Mg/Ca Weak upwelling, deep thermocline/warm SST

LaRiviere et al. (2012) Foraminifera δ 18O, Mg/Ca, U kʹ37 Weak upwelling/warm SST

Seki et al. (2012) TEX86, U kʹ37 Intense upwelling/cool SST

Rousselle et al. (2013) U kʹ37, fine fraction δ 18O Intense upwelling/cool SST

Beltran et al. (2014) U kʹ37 Weak upwelling/warm SST

Ford et al. (2015) Foraminifera Mg/Ca Weak upwelling, deep thermocline/warm SST

Reghellin et al. (2015) Bulk/fine carbonate δ 13C and δ 18O Intense upwelling/cool SST

Zhang et al. (2014) TEX86, U kʹ37 Intense upwelling/cool SST

Zhang et al. (2017) TEX86, U kʹ37 Intense upwelling/warmer water column

Drury et al. (2018) Foraminifera δ 13C and δ 18O, Mg/Ca Weak upwelling; intense upwelling at 6.5-5.7 Ma

Liu et al. (2019) U kʹ37 Warm SST

Table 1 
Overview of the Main Published Studies Discussing Eastern Equatorial Pacific (EEP) Paleoceanography During the Late Miocene and the Early Pliocene With the 
Main Proxies Used to Reconstruct SST and the Scenario Proposed
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Steinthorsdottir et al., 2021). Fourth, divergent paleoceanographic interpretations may arise due to complexities 
in the understanding of the environmental signal captured by the various proxies in such a dynamic ocean area 
(Lea, 2014). For example, paleoceanographic interpretations of bulk carbonate δ 13C and δ 18O are complicated 
because bulk carbonate consists of multiple microfossil and nannofossil contributors, each with potentially differ-
ent isotopic fractionations due to their characteristic ecologies (Reghellin et al., 2015, 2020).

To better understand bulk sediment δ 13C and δ 18O as an EEP proxy, Reghellin et al. (2015, 2020) generated new 
bulk δ 13C and δ 18O records from on-Equator Sites 573 and U1338, and on bulk and multiple isolated sediment 
fractions from on-Equator Site 851 (Figures 1 and 2). These studies confirmed Shackleton and Hall's  (1995) 
observations of correlative bulk isotopes records along the Equator in the EEP, and demonstrated that EEP bulk 
records primarily reflect the stable isotope composition of photosynthesizing coccolithophores, by far the most 
significant sedimentary contributor (typically >90% of the carbonate fraction) at the examined on-Equator sites. 
The bulk carbonate δ 13C and δ 18O, thus reflect upper mixed layer chemical properties and temperature variability 
albeit with some modification by “vital effects” (Reghellin et al., 2020).

Data from on-Equator Sites 573, 851, and U1338 (Reghellin et al., 2015, 2020) are consistent with previous 
data showing higher bulk δ 18O and increased sedimentation rates during the late Miocene and the early Pliocene 
(Farrell & Prell, 1989; Pisias et al., 1995; Shackleton & Hall, 1995), supporting the idea of late Miocene-early 
Pliocene BB conditions along the Equator in the EEP. However, the spatial extent of BB conditions in the EEP is 
still not fully clear. This is because available bulk isotopes data are (a) mainly from on-Equator sites (Reghellin 
et al., 2015, 2020; Shackleton & Hall, 1995) and (b) only from off-Equator Sites 852 and 853, limited to the 
eastern EEP, whereas coverage to the northwest is needed to better document the regional picture (Figure 1). 
Moreover, Shackleton and Hall  (1995) analyzed sediments scraped from the surface of each 1.5-m long core 
section, thus, each of their bulk δ 13C and δ 18O analysis represents an average over the 1.5-m long intervals (long 
bar symbols in Figure 2), which is insufficient for resolving important finer scale variability of the EEP system.

Here, we present new carbonate content (CaCO3%) and bulk carbonate δ 13C and δ 18O records from Integrated 
Ocean Drilling Program (IODP) Site U1335 (Figure 1) that span the last 7 Myr. Site U1335 lies at about 5°N 
latitude and provides an “off-Equator” perspective to the west of previous off-Equator records and will be useful 
to either support, or reconsider, previous ideas of intensified wind-driven upwelling in the EEP during the late 
Miocene and the early Pliocene. This site has remained >2.5° north of the Equator since 7 Ma (Pälike et al., 2010), 
suggesting that changes in sediment properties and composition likely reflect changes related to upwelling condi-
tions rather than site migration on the northwestward moving Pacific Plate. Site U1335 lies at a greater water 
depth (>4.3 km) than other EEP sites having bulk sediment stable isotopes, providing an opportunity to explore 
the impact of sublysocline carbonate dissolution on bulk sediment geochemical signals. The new bulk isotope 
data from Site U1335 were generated to help answer the following questions:

1.  Are high-frequency variations in bulk carbonate isotope records also present at Site U1335?
2.  Is bulk carbonate δ 18O at Site U1335 similar to other off-Equator bulk δ 18O records, showing ca. 1‰ lower 

values than on-Equator sites during the BB?
3.  During the BB, how does sedimentation rates at Site U1335 compare to those at other on-Equator and 

off-Equator sites?
4.  Are these new bulk carbonate isotope data consistent with a more intense and Equator-parallel wind-driven 

ocean circulation during the BB, compared to the present?

2. Materials and Methods
2.1. IODP Site U1335

Site U1335 is located above ca. 26 Ma old crust at 5°18.7ʹN latitude, 126°17.0ʹW longitude, at a water depth of 
4327.5 m below sea level (Pälike et al., 2010). Two holes (A and B) were APC-cored to 341 and 378 m below 
seafloor (mbsf), respectively. The sediments consist of late Miocene to Pleistocene multicolored calcareous nann-
ofossil, foraminifera, and diatom oozes and are characterized by decimeter-scale to centimeter-scale alterna-
tions in sediment color, and physical properties, representing changes in CaCO3% at orbital time scales (Lyle 
et al., 2019; Figure 3). Site U1335 moved to the northwest for about 700 km over the last 7 Myr (Figure 1), but 

 25724525, 2022, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021PA

004313 by U
rbino U

niversity ''C
arlo B

o, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

REGHELLIN ET AL.

10.1029/2021PA004313

6 of 16

remained outside the region of strong present day wind-driven equatorial upwelling (±2.5° of latitude; Fiedler & 
Lavín, 2017; Pälike et al., 2010).

2.2. Sampling Strategy

A total of 335 samples were selected from Site U1335, following a spliced composite section spanning 0–42 m 
composite depth (mcd; Table S1 in Supporting Information S1). Each sample has a volume of 5 cc and was 
collected spanning 1 cm of vertical thickness. Of the 335 samples, 259 were selected to produce records with 
higher spatial and temporal resolution, across three depth/time intervals (Table S1 in Supporting Information S1). 
These three intervals where selected to cover similar depth/age ranges of intervals with published CaCO3%, bulk 
carbonate and foraminifera stable isotope data at Site 851 (Figure 2; Reghellin et al., 2020). For consistency, we 
kept the same labeling for intervals with similar age ranges: 0–0.9 Ma—Interval 1 (Int1); 4.0–4.4 Ma—Interval 
3 (Int3); 6.2–6.8 Ma—Interval 4 (Int4), which includes the acme of the BB.

Sample spacing within the three intervals is 5.3 cm and 8.1 kyr on average; sedimentation rates vary significantly 
in the three intervals (Table S1 in Supporting Information S1). The remaining 76 samples were selected to fill 
the gaps between the three intervals over the last 7 Ma with records at lower spatial and temporal resolution (on 
average 34.1 cm, 49.9 kyr).

2.3. Carbonate Analyses

The bulk sediment CaCO3% was measured using the coulometry method (Mörth & Backman, 2011). For each 
sample, 30–35 mg of powdered sediment was put into a dry and clean Teflon cup. CaCO3% was determined from 
the reaction of sediment with 2 mL of 2 M hydrochloric acid. The acid was injected into the coulometer sample 
tube, so it completely drowned the sediment sample. The measurement precision is ±0.8%.

Figure 3. Site U1335 downcore physical and chemical properties. (a) Composite core image, (b) carbonate content 
(CaCO3%), (c) Gamma Ray Attenuation Porosity Evaluator (GRAPE) measurements (approximating wet bulk density), (d) 
magnetic susceptibility (MS), and (e) dissolved manganese in pore water at Site U1335. Black bars represent the three time 
intervals with records at higher resolution. CaCO3% data come from shipboard measurements (Pälike et al., 2010) and this 
study. GRAPE, MS, and dissolved manganese (Mn 2+) data come from shipboard measurements (Pälike et al., 2010).
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2.4. Stable Isotope Analyses

Stable isotope analyses were performed at the Department of Geological 
Sciences, Stockholm University, using a Finnigan Mat 252 IRMS coupled 
with a Finnigan Gasbench II device.

Sample aliquots corresponding to 0.25 mg of pure CaCO3 were added to a 
septum-seal glass vial, flushed with gaseous helium and reacted with excess 
of 100% phosphoric acid at room temperature for 18 hr. Two international 
(IAEA-CO-1 and NBS19) and two in-house (CaCO3 and Merck Carm-1) 
standards were analyzed with the samples to estimate the analytical preci-
sion of these measurements (Révész & Landwehr, 2002), which is ±0.07‰ 
for δ 13C and ±0.15‰ for δ 18O. Results are expressed in per mil (‰) and 
reported relative to Vienna Pee Dee Belemnite (PDB).

2.5. Age Model and Sedimentation Rates

To align the new records at Site U1335 with published data across the EEP 
(Figure 4), we calculate age of sediment samples at Site U1335 and at Site 
U1338 (Reghellin et al., 2015) using the astronomically tuned age model of 
Lyle et al. (2019). We have assumed linear sedimentation rate (LSR) between 
two successive age markers and are aware that the assumption of LSR 
between age tie points leads to inaccuracies of age estimations. However, the 
age estimation errors should be <50 kyr for any sample.

3. Results
3.1. Carbonate Content

The CaCO3% signal displays large amplitude variations over short depth/time 
intervals as well as long-term trends over the studied sedimentary section 
(Table S1 in Supporting Information S1). CaCO3% ranges between 19.8% 
and 89.6%, and averages 57.6%. Changes in CaCO3% correspond to changes 

in sediment color and physical properties (Figure 3). Intervals with low CaCO3%, are generally darker in color, 
have lower Gamma Ray Attenuation Porosity Evaluator (GRAPE) values (that approximate sediment wet bulk 
density, WBD), and higher magnetic susceptibility (MS). Intervals with high CaCO3%, are generally lighter in 
color, have higher GRAPE values, and lower MS values. In addition, CaCO3% shows a positive second-order 
relationship with WBD (Figure S1 in Supporting Information S1). Carbonate content at Site U1335 generally 
decreases from present day to about 4 Ma (Figure 5). Before 4 Ma, CaCO3% generally increases with increasing 
depth and age, although low CaCO3% values (<40%) are registered at about 5.8 and 6.8 Ma. Across the entire 
Int1 the CaCO3% exhibits the largest amplitude variations of the whole record, with variations greater than 40% 
over ca. 0.5 m or 75 kyr (Figures 3 and 5).

3.2. Carbon Isotope Composition of Bulk Carbonate

The bulk carbonate δ 13C record exhibits both long-term trends and short-term variations (Figure 5), ranging 
between 0.17‰ and 1.79‰ and averages 0.89 ± 0.28‰ (1σ standard deviation used throughout the text; Table S1 
in Supporting Information S1). There is a general δ 13C decrease from 0 to 2 Ma, although lowest (0.39 ± 0.15‰ 
on average) and highest (1.38 ± 0.28‰ on average) values over the last 7 Ma occur at ca. 0.1 and 0.5 Ma, respec-
tively (Figure 5). Between about 2 and 4 Ma bulk δ 13C slightly increases by ca. 0.15‰ on average. Before 4 Ma, 
the bulk δ 13C generally decreases reaching values lower than 0.5‰ in the late Miocene at about 6.4 and 6.8 Ma.

3.3. Oxygen Isotope Composition of Bulk Carbonate

The bulk carbonate δ 18O record exhibits both long-term and short-term changes over the last 7 Ma (Figure 5), 
with values ranging between −1.12‰ and 1.02‰ and averages −0.28  ±  0.31‰ (Table S1 in Supporting 

Figure 4. Sediment age-depth relationships constrained by biostratigraphic 
and magnetostratigraphic markers for Sites 573, 851, 852, 853, U1335, and 
U1338. These includes geomagnetic reversal boundaries and first and last 
occurrence of calcareous nannofossils species (Backman et al., 2013; Pälike 
et al., 2010; Raffi & Flores, 1995; Shipboard Scientific Party, 1992; Weinreich 
& Theyer, 1985). All age markers shown in the figure have been placed 
onto a common time scale (Lourens et al., 2004). All sites display increased 
sedimentation rates in the late Miocene and early Pliocene, which reflects 
greater biogenic sedimentation during the BB across the eastern equatorial 
Pacific (EEP).
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Information S1). Bulk δ 18O increases from present day to about 0.4 Ma (Figure 5), then generally decreases until 
about 3.4 Ma. Before 3.4 Ma bulk, δ 18O reach values of ca. −0.1‰ on average in the late Miocene. Despite the 
increasing trend, bulk δ 18O shows significantly low values (<−0.8‰) in five samples, two centered at about 
5.1 Ma, and the remaining three centered at about 5.8 Ma (Figure 5; Table S1 in Supporting Information S1).

4. Discussion
4.1. Relationship Between Sediment Composition and WBD at Site U1335

The new CaCO3% record at Site U1335 is consistent both with shipboard data (Figure 3; Pälike et al., 2010) and 
data derived from X-ray Fluorescence (XRF; Lyle et al., 2019; Shackford et al., 2014). The CaCO3% shows large 
amplitude changes (up to 38%) over centimeter-scale to decimeter-scale depth intervals, which relate to changes 
in sediment color, GRAPE, and MS (Figure 3). Sediments at Site U1335 show a positive second-order relation-
ship between CaCO3% and WBD (Figure S1 in Supporting Information S1), consistent with previous observa-
tions from Site U1338 (Reghellin et al., 2013), and indicates a wide range in WBD for a given CaCO3% value. 
This implies that sediment at Site U1335 consists of three main components, each with different grain density 
and porosity: (a) fine biogenic carbonate particles, mostly calcareous nannofossils, (b) coarse biogenic carbonate 
particles, mostly planktonic foraminifera, and (c) biogenic silica, mostly diatoms, and Radiolaria.

Figure 5. CaCO3%, bulk carbonate δ 13C and δ 18O, and sedimentation rate records at ODP Site U1335. Black bars represent 
the three time intervals with records at higher resolution, whereas gray bars represent the intervals analyzed by Reghellin 
et al. (2020). The vertical gray line represents the end of the BB as suggested by geochemical records at sites examined in this 
study. Ages for samples were determined using the age model of Lyle et al. (2019).
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4.2. Sediment Color

In the EEP, darker sediments typically represent intervals richer in biogenic silica whereas lighter sediments repre-
sent intervals richer in biogenic carbonate (Pälike et al., 2010). Sediment color becomes lighter with increasing 
burial depth over the studied interval at Site U1335 (Figure 3). However, the lighter sediment color below 24 mcd 
compared to above 24 mcd is not directly linked to higher CaCO3%: carbonate content averages 57.5% between 
0 and 24 mcd (darker) and 57.9% between 24 and 42 mcd (lighter; Table S1 in Supporting Information S1). A 
possible explanation is lower concentrations of dark-colored manganese-rich minerals (Pälike et al., 2010), as 
indicated by the decreasing downcore porewater Mn 2+ profile (Figure  3). Shipboard measurements of Mn 2+ 
concentration in interstitial water show values >33 μM in the upper ca. 23 mcd of sediment with a high peak of 
43.8 μM at 13 mcd. Below 13 mcd, the Mn 2+ concentration decreases, reaching values of <15 μM at 39 m. Metal-
lic oxides in interstitial water can precipitate into authigenic carbonates, e.g., rhodochrosite (MnCO3), which are 
dark in color, or coat existing carbonate particles (Hesse & Schacht, 2011). The decreasing Mn 2+ concentration 
indicates that microbial reactions are consuming manganese oxides below 13 mcd. This process removes manga-
nese authigenic carbonates, and may have resulted in the observed lighter sediment color with depth (Figure 3), 
despite the absence of an average increase of CaCO3% in the 0–42-mcd interval.

4.3. Carbonate Deposition and Preservation at Site U1335

In the stratigraphic interval corresponding to the last 7 Myr, the average CaCO3% at Site U1335 is 58%. This 
value is clearly lower than observed at on-Equator Sites U1338 (67%), 851 (78%), and 573 (79%; Reghellin 
et al., 2015, 2020), as well as off-Equator Sites 852 (76%) and 853 (71%; Farrell et al., 1995; Figure 6). Three 
factors may explain the >9% lower average CaCO3% at Site U1335: (a) greater carbonate dissolution at greater 
water depth, (b) lower production of biogenic carbonate particles, and (c) dilution by biogenic silica particles and 
clays.

1.  Increased dissolution with depth: Site U1335 is the deepest of the sites examined in this study (Figure 1). Pres-
ently, the lysocline depth across the EEP ranges between 3.5 and 4.0 km and was shallower in the late Miocene 
(Archer, 1991; Berger, 1973; Farrell & Prell, 1989; Farrell et al., 1995; Lyle & Wilson, 2006). Carbonate 
dissolution thus impacted the CaCO3% at Site U1335 more severely when compared to Sites 851, 852, 853, 
and U1338, which are several hundreds of meters shallower. We suggest that dissolution was stronger in the 
upper part of the sedimentary succession at Site U1335 because of the increasing seafloor depth with time

2.  Lower production of biogenic carbonate: In the EEP, the production of biogenic CaCO3 is, in general, higher 
at the Equator where the wind-driven upwelling is strongest and decreases with increasing latitude across the 
margins of the North Equatorial Current (Fiedler & Lavín, 2017; Honjo et al., 1995; Lyle et al., 2019), which 
marks the lower branch of the warm and nutrient poor North Pacific Gyre (Honjo et al., 1995). Site U1335 is 
presently located at about 5°N latitude and, similar to Sites 852 and 853, remained north of 2.5°N latitude over 
the last 7 Myr. Conversely, on-Equator Sites U1338, 851, and 573 remained within the zone of strong wind-
driven upwelling over the same time interval (Figure 1). The lower average value of CaCO3% at Site U1335 
might, therefore, reflect both lower biogenic carbonate production and more severe carbonate dissolution 
when compared to on-Equator sites. Differently, lower carbonate production cannot be invoked to explain the 
lower values observed in comparison to off-Equator Sites 852–853, greater sublysocline carbonate dissolution 
at the greater water depth of Site U1335 remaining a plausible mechanism

3.  Dilution by biogenic silica and clays: Changes in flux of biosilica and clay particles could potentially act as 
diluents, lowering the CaCO3% at Site U1335. Comparison between published XRF-derived, normalized 
median-scaled biosilica content (SiO2NMS%) record (Lyle et  al.,  2019) and new CaCO3% record clearly 
shows that intervals of high CaCO3% correspond to intervals of low SiO2NMS% and vice versa throughout 
the last 7 Myr (Figure S2 in Supporting Information S1). These results are consistent with the WBD-CaCO3% 
relationship (Figure S1 in Supporting Information S1), implying that intervals with higher CaCO3% have 
lower biosilica content and vice versa. However, given the lower biological production off the Equator over 
the late Neogene, biosilica presumably dilutes carbonate to a lesser extent at Site U1335 than at on-Equator 
sites. Clays, mainly eolian material, are a minor sediment component (≤10%) compared to biogenic carbonate 
and biosilica in late Neogene sediments deposited across the EEP (Farrell et al., 1995; Hovan, 1995; Pälike 
et al., 2010; Pisias et al., 1995). Thus, clays are not a significant diluent at Site U1335 (Pälike et al., 2010)
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4.4. Source of Bulk Carbonate δ 13C and δ 18O Signature at Site U1335

Coherent patterns in bulk stable isotope (C, O) variability occur at locations having different sedimentation rates 
over the last 7 Myr, the most dramatic difference being the much greater LSR at on-Equator sites between 7 and 
5 Ma (Figure 6). This implies that stable isotope records do not result from diagenesis in EEP sediments (Hesse & 

Figure 6. Comparison between relevant published CaCO3%, bulk carbonate δ 13C and δ 18O and sedimentation rate records 
from the eastern equatorial Pacific (EEP) for the last 7 Ma at Site 851 with new data from Site U1335 (this study). The 
vertical gray line represents the end of the biogenic bloom (BB; ca. 4.6 Ma) as suggested by geochemical records at 
sites examined in this study. Ages for samples at Sites U1335 and U1338 were determined using the age model of Lyle 
et al. (2019). Sample ages for the other sites use the same schemes as for Figure 2. Note that Site U1335 δ 18O displays much 
similar values compared to on-Equator sites than off-Equator sites, suggesting BB conditions at site location. The low linear 
sedimentation rate (LSR) even during the BB is due to intense carbonate dissolution at Site U1335.
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Schacht, 2011; Reghellin et al., 2020), and therefore represent primary precipitation of calcite at both on-Equator 
and off-Equator sites.

The dominant carbonate component in sediment deposited within the EEP since the late Miocene are members of 
the phylomorphogenetic reticulofenestrid calcareous nannofossil lineage (Bolton et al., 2010; Mayer et al., 1985; 
Pälike et al., 2010; Pisias et al., 1995; Raffi & Flores, 1995). The second most abundant carbonate component 
are tests of planktonic foraminifera, generally comprising up to 15 wt % at on-Equator Sites U1338, 851, and 573 
(Reghellin et al., 2013, 2015, 2020). The proportion of planktic foraminifera tests at Site U1335 is presumably 
lower than at on-Equator sites, considering the greater sensitivity of planktic foraminifera calcite to sublysocline 
dissolution (Berger, 1973). Benthic foraminifera are a minor component in deep-sea sediments (ca. <1%; Conan 
et al., 2002; Hayward et al., 2002). The contribution of foraminifera calcite to bulk δ 13C and δ 18O records at 
Site U1335 is thus minor, implying that these records primarily reflect the stable isotope composition of reticu-
lofenestrid coccolith calcite, and conditions in the upper 50 m of the water column (Reghellin et al., 2020). Bulk 
δ 13C and δ 18O at Site U1335 by-and-large hence reflects water chemistry and temperature in the upper mixed 
layer were these coccolithophorids dwell (Anderson & Steinmetz, 1981, 1983; Hagino et al., 2000; Honjo & 
Okada, 1974; Steinmetz, 1994).

In the upper 50 m of the water column and within the area where the studied sites are situated, the annual variance 
of mean ocean water salinity is limited (≤0.5 psu; Locarnini et al., 2019), and it is assumed to have been similar 
back over past 7 Myr, on late Neogene time scales. Thus, the impact of salinity on bulk δ 18O is negligible (Conroy 
et al., 2014). Changes in bulk δ 18O can be interpreted as reflecting variations in SST spatially and over time. This 
is evident when bulk δ 18O measured in surface sediment along the Equator are compared to modern SST (Figure 
S3 and Table S2 in Supporting Information S1). Hence, from now on bulk δ 18O is considered to track changes in 
SST, despite this proxy cannot be employed to quantitively reconstruct SST across the EEP.

4.5. Paleoceanographic Interpretation of Bulk δ 13C and δ 18O at Site U1335

4.5.1. Coherent Bulk δ 13C Across the EEP

The new bulk δ 13C record at Site U1335 extends previous observations of covarying bulk δ 13C records along the 
Equator (Reghellin et al., 2015, 2020; Shackleton & Hall, 1995) to an off-Equator site located 1,800 km west of 
Leg 138 off-Equator sites (Figures 1 and 6). These results imply similar high-frequency variations in multiple 
surface water chemistry parameters, including concentration and δ 13C of dissolved inorganic carbon (δ 13CDIC), 
across the EEP throughout the past 7 Myr, despite large ocean conditions variability in the region over interannual 
scale (Kroopnick, 1985; Reghellin et al., 2015, 2020; Tagliabue & Bopp, 2008). These observations are consist-
ent with variations ≤02.‰ of δ 13CDIC in surface water across the modern EEP (Kroopnick,  1985; Tagliabue 
& Bopp, 2008), and imply a homogenous δ 13CDIC distribution across the EEP, with differences <0.3‰ at any 
given time since 7 Ma (above references). Crucially the covarying bulk δ 13C at different sites suggests EEP-wide 
changes in surface water inorganic carbon chemistry over time since the late Miocene.

4.5.2. The Biogenic Bloom Across the EEP

The new data from Site U1335 represent the first bulk isotope and CaCO3% data from an off-Equator site in the 
northwestern EEP and help understand how the BB was spatially distributed across the EEP. At Site U1335, bulk 
δ 18O and LSRs are 0.13‰ and 2%, respectively, higher during the BB compared with post-BB times, reflecting 
lower SST and enhanced biological production in surface waters generated by enhanced equatorial upwelling 
(Lyle et al., 2019; Figure 5). Moreover, bulk δ 18O displays higher values compared to other off-Equator sites and 
lower values compared to on-Equator sites (Figure 6). For example, between 7 and 5 Myr average bulk δ 18O is, at 
Site U1335, 0.5‰ higher than at off-Equator Site 852 and 0.4‰ lower than at on-Equator Site U1338 (Reghellin 
et al., 2015; Shackleton & Hall, 1995). The δ 18O offset between Site U1335 and off-Equator sites is unexpected. 
Considering the meridional bulk δ 18O gradients in published records (Figure 2; Reghellin et al., 2015, 2020; 
Shackleton & Hall, 1995) and modern meridional SST gradients with isotherms roughly parallel to the Equator 
(Figure 1; Fiedler & Lavín, 2017), bulk δ 18O at Sites U1335 and 852 might be expected to be similar because the 
two sites are today located at about the same latitude and presumably were located at similar latitudes over the 
last 7 Myr (Pälike et al., 2010; Pisias et al., 1995). Instead, the higher bulk δ 18O reflects cooler SST at U1335 
compared to Site 852 during the late Miocene and early Pliocene (Figure 7). This implies that, during the BB, 
the upwelling of cool intermediate water off the Equator was stronger to the west of the EEP, where Site U1335 
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was located (ca. 120°W longitude), compared to the east, where Site 852 was located (ca. 105°W longitude). 
This zonal gradient off the Equator seems to reflect an equatorial upwelling area less parallel to the Equator 
compared to present day, with more tilted isotherm contour patterns (Figure 7). The lower bulk δ 18O at Site 
U1335 compared to on-Equator sites suggests warmer SST than along the Equator during the BB.

The comparison between bulk δ 18O average values from each site at 7 Ma with those at present potentially can 
add information on SST gradients and may help understanding of the BB geometry during the BB. At Sites 853 
and 852 bulk δ 18O is, respectively, ca. 1‰ and 0.3‰ lower at 7 Ma compared to present day (Shackleton & 
Hall, 1995). At Sites U1335, 573, 851, and U1338, bulk δ 18O is on average ca. 0.5‰ higher at 7 Ma compared to 
modern (Table S1 in Supporting Information S1; Reghellin et al., 2015, 2020; Shackleton & Hall, 1995). These 
observations are consistent with warmer than present day SST off the Equator in the eastern EEP and lower than 
present day SST off the Equator in the western EEP and along the Equator (Figure 7). SST meridional gradients 
were hence steeper during the BB and the upward motion on subsurface water was likely more intense compared 
to present day (Pisias et al., 1995; Shackleton & Hall, 1995).

Considering the stronger equatorial circulation affecting Site U1335 during the BB, we would also expect higher 
sedimentation rates compared to Site 852, to the east. This is not the case and, at Site U1335 between 5 and 
7 Myr, LSR averages 8.4 m/Myr compared to 18.0 m/Myr at Site 852 and 12.2 m/Myr at Site 853 (Figure 6). 
Higher LSR at Site 853 compared to Site U1335 suggests that the lower LSR at Site U1335 reflects greater 
carbonate dissolution at >4.3 km water depth compared to the 600 m shallower (>3.7 km) water depth at Site 
853, rather than to lower biological production compared to other off-Equator sites.

Site migration is not considered to be the cause of high bulk δ 18O and LSRs during the BB at Site U1335 
because high bulk δ 18O and LSRs also characterize, during the BB, on-Equator Sites U1338, 851, and 573 

Figure 7. Comparison between the eastern equatorial Pacific (EEP) wind-driven equatorial upwelling system under modern 
and reconstructed biogenic bloom (BB) conditions. Modern average SST (a), qualitative SST gradients at 7 Ma inferred 
from bulk stable isotopes, CaCO3% and linear sedimentation rate (LSR) at sites discussed in this study (b) and inclination 
of SST contours under modern and BB conditions (c). Given the large N-S gradients in surface water properties across the 
EEP, BB conditions reconstruction is restricted to the area adjacent to the backtracked location at 7 Ma of the sites examined, 
which roughly correspond to the Ocean area comprised between 3°S and 7°N latitude and between 100°W and 130°W 
longitude (dashed black box in panel a). The inclination angles of SST contours refer only to the area north of the Equator 
and within the dashed box. The BB was at its acme at about 7 Ma in the EEP as indicated by the bulk sediment proxies at 
multiple locations across the EEP. Note that during the BB meridional SST gradients were greater compared to present day as 
indicated by warmer SST at Sites 852 and 853. However, SST was cooler at Site U1335 compared to modern suggesting that 
equatorial upwelling circulation was less parallel to the Equator compared to modern, with SST contours moving northwards 
with increasing longitude.
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(Figure 6). Records at the latter sites are less affected by site migration because they remained within the equato-
rial upwelling zone during the last 7 Myr. Hence, high bulk δ 18O and LSRs at Site U1335 primarily reflect cooler 
SST and increased biological production generated by enhanced equatorial circulation during the BB.

Apart from the generally high values, the bulk δ 18O record at Site U1335 displays five δ 18O minima centered at 
about 5.0 and 5.8 Myr (Figure 5; Table S1 in Supporting Information S1). One possible explanation for these is 
the presence of authigenic carbonates in sediments (Hesse & Schacht, 2011). The isotopic composition of such 
carbonate can vary from 0‰ to −25‰ for δ 13C and from −2‰ to −3‰ for δ 18O, depending on the precipitation 
conditions in sediment pores and oxic to suboxic microbial organic matter oxidation. The δ 18O minima in BB 
sediments might reflect the presence of  18O-depleted authigenic carbonate in the sediment, as they correspond to 
intervals of high MS (Pälike et al., 2010; Figure S4 in Supporting Information S1) and of darker sediment color 
(Figure 3). The absence of correlative low peaks in the bulk δ 13C record suggests that the carbon isotope compo-
sition of authigenic carbonate is close to that of biogenic carbonate.

5. Conclusions
Our data from Site U1335 represent the first set of bulk carbonate content and stable isotope records spanning 
the last 7 Myr at a resolution >20 kyr from an off-Equator site in the northwestern sector of the EEP. Site U1335 
is positioned at a similar latitude, ca. 1,800 km to the west, and at a deeper water depth compared to Leg 138 
off-Equator sites from which corresponding data have been published (Farrell et al., 1995; Pisias et al., 1995; 
Shackleton & Hall, 1995). Our initial questions (Ch. 1) can thus be addressed as follows:

1.  Bulk δ 18O and δ 13C records display high-frequency variation at Site U1335 similarly to on-Equator Sites 
573, 851, and U1338 (Reghellin et al., 2015, 2020; Shackleton & Hall, 1995). These variations are coupled 
to high-frequency changes in CaCO3%, sediment color and physical properties, and result from changes in 
biogenic sediment production, mainly in the upper mixed layer, and sediment preservation

2.  The bulk δ 18O at Site U1335 displays higher values during the BB than other bulk δ 18O records measured off 
the Equator. It is on average 0.5‰ higher than at Site 852, located at identical latitudes over the last 7 Myr. 
This observation indicates cooler SSTs generated by stronger equatorial upwelling to the west of the EEP, 
compared to the east

3.  Sedimentation rates at Site U1335 are higher during BB times compared to post-BB times, but are lower 
compared to both on-Equator and off-Equator sites examined in the study. This implies both (a) enhanced 
biological production during BB times compared to post-BB times and (b) greater carbonate dissolution at 
Site U1335 compared to other sites, due to its several hundreds of meters greater water depth

4.  The new bulk carbonate and stable isotope data from Site U1335 are consistent with a more intense wind-
driven upwelling and expanded SST meridional gradients in the EEP during the BB (Pisias et al., 1995). The 
zonal SST gradient at ca. 5°N latitude during the BB seems to reflect more tilted isotherm contour patterns, 
with the equatorial circulation being less parallel to the Equator compared to present day

The results presented here represent only the starting point in the effort toward understanding the BB in the EEP. 
We are aware that the SST gradients inferred from bulk δ 18O are only in part consistent with SST reconstructions 
based on other proxies (e.g., Liu et al., 2019). A step toward further improving our understanding of how the BB 
manifests in the EEP would be to generate high resolution bulk CaCO3% and stable isotopes records at multiple 
locations from an even wider area of the EEP (Figure 7). To quantify SST across the EEP bulk δ 18O and direct 
SST proxy records, such as U kʹ

37 and TEX86, need to be generated from the same location and at high temporal 
resolution. Certainly, bulk δ 18O data at Site U1335 reveal a more complicated spatial distribution of the BB than 
originally thought.

Data Availability Statement
Data generated in this study are available at https://doi.org/10.17043/reghellin-2022-sediment-1. Source of 
published data: Site 573: Mayer et al. (1985), Reghellin et al. (2015), and Weinreich and Theyer (1985). Site 851: 
Pisias et al. (1995), Raffi and Flores (1995), Reghellin et al. (2020), Shackleton and Hall (1995), and Shipboard 
Scientific Party  (1992). Sites 852 and 853: Pisias et al.  (1995), Raffi and Flores  (1995), and Shackleton and 
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Hall (1995). Site U1335: Lyle et al. (2019) and Pälike et al. (2010). Site U1338: Backman et al. (2013), Pälike 
et al. (2010), and Reghellin et al. (2013, 2015)
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