Myokines are peptides produced and secreted by skeletal muscle, with autocrine, paracrine and endocrine actions that are involved in the regulation of muscle repair or regeneration. Moreover, myokines are overexpressed during physical exercise and appear to contribute to the benefits of exercise to metabolic homeostasis, suggesting that muscle is able to send specific messages in response to various stimuli. It has recently been established that extracellular vesicles (EVs) can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs, which can be taken up by targeting cells changing their biological behavior. In addition, it has been found that myoblasts and myotubes release EVs in the extracellular environment during myogenic differentiation. The aim of this study was to investigate the type of EVs released by C2C12 cells in the early phases of myogenic differentiation process. Furthermore, we tested if the application of an in vitro exercise stimulus, such as electric pulse stimulation (EPS) to myotubes, can modify EV secretion. Finally, we evaluated whether muscle tissue releases EVs in the bloodstream and if physical exercise modulates the levels of MyomiRNAs into EVs. Our data represent new evidence that during the early phase of the myogenic differentiation process, myocytes release two types of extracellular vesicles: microvesicles with a mean diameter of 200 nm containing electron-dense material, and exosome-like vesicles showing a diameter of about 50-100 nm containing electron-transparent material. Moreover, we identify two sub-populations of exosome-like vesicles: one characterized by lower density values and high levels of RNA, and the other showing heavier floating values and abundant DNA. The results obtained also highlight that the relative ratio of these different vesicles changes during the myogenic differentiation process. It is noteworthy that treatments of recipient cells with purified vesicles highlighted that EVs are biologically active entities able to affect the activity of target cells such as myocytes and macrophages. Concerning the effects of exercise on the release of EVs, our data show that myotubes subjected to EPS increase EV secretion compared to control cells. Using Nanoparticles Tracking Analysis (NTA), we demonstrated that contracting cells release EVs that have a diameter falling in the range of exosomes. These data suggest that muscle fibers could release EVs in response to contracting activity in addition to myokines. Interestingly, we demonstrated that muscle tissue releases EV also in vivo; in fact the presence of EVs with exosomal characteristics in the bloodstream was highlighted, these EVs were positive for alpha-sarcoglycan (SGCA) and enriched for miR-206 confirming their muscle origin. Finally, a significant positive correlation was found between the aerobic fitness, measured as VO2max, and muscle-specific miRNA (MyomiRNA) expression in EVs; moreover, miR-133b and -181a-5p contained in EVs were significantly up-regulated after acute aerobic exercise. Future studies may be designed to deeply explore the content of muscle extracellular vesicles in physiological (e.g. exercise) or pathological (e.g. inactivity, atrophy, diabetes, etc.) conditions. Such efforts could provide insight into the role of EVs not only as useful biomarkers, but also as regulators of the body’s homeostasis. Taken together, this evidence suggest that muscle can release EVs in the extracellular environment which mediate cell-to-cell communication potentially involved in muscle repair, regeneration and remodeling and/or in muscle cross-talk with other organs.

Il muscolo scheletrico produce e secerne fattori solubili, chiamati miochine in grado di svolgere un‟azione a livello autocrino, paracrino, ed endocrino contribuendo alla riparazione o rigenerazione muscolare. Molte di queste proteine vengono secrete durante l'esercizio fisico e sembrano in parte responsabili dei benefici dell‟attività fisica sulla salute. Quindi, queste evidenze sperimentali hanno dimostrato che il muscolo possiede anche un‟importante attività endocrina. Recentemente, è stato proposto che anche le vescicole extracellulari (EV) possano mediare il cross-talk intercellulare sia in condizioni normali che patologiche attraverso il trasferimento di miRNA specifici. Studi precedenti hanno riportato che mioblasti e miotubi rilasciano EV nell'ambiente extracellulare durante il processo di differenziamento miogenico. Nella prima parte di questa tesi è stato indagato se le cellule C2C12 rilasciano tipologie diverse di EV durante le prime fasi del processo di differenziamento miogenico e se queste possiedono funzioni biologiche. Nella seconda parte, sono stati studiati gli effetti dell‟esercizio fisico sul rilascio di EV da parte del muscolo. In particolare, è stato valutato se l'applicazione di impulsi elettrici (EPS) in miotubi cresciuti in vitro induce la secrezione di EV e infine se il tessuto muscolare rilascia EV nel circolo ematico in seguito ad attività fisica. I dati ottenuti dimostrano che durante le prime fasi del processo di differenziamento miogenico, i miociti rilasciano due tipi di vescicole extracellulari: le microvescicole con un diametro medio di 200 nm, contenenti materiale elettron-denso, e vescicole con caratteristiche esosomiali, caratterizzate da un diametro di circa 50-100 nm contenenti materiale elettron-trasparente. Queste due popolazioni di vescicole presentano anche un diverso contenuto di acidi nucleici, in particolare, quelle caratterizzate da una minor densità hanno elevati livelli di RNA, mentre le vescicole più pesanti mostrano livelli di DNA più abbondanti. Inoltre è stato evidenziato che il rapporto relativo tra queste sub-popolazioni di vescicole cambia nel corso del processo di differenziamento miogenico. Quando utilizzate nel trattamento di cellule target, le EV hanno evidenziato la capacità di influenzare l‟attività delle cellule bersaglio, come miociti e macrofagi, in termini di regolazione genica. Per quel che riguarda l‟effetto della contrazione muscolare sul rilascio di vescicole, è stato dimostrato che la stimolazione mediante EPS induce la secrezione di EV, principalmente esosomi, da parte dei miotubi coltivati in vitro. Inoltre, è stato ipotizzato che il muscolo possa rilasciare EV anche in vivo. I dati riportati mostrano infatti la presenza, nel plasma, di EV positive all‟alfa-sarcoglicano (SGCA) e arricchite in miR-206, caratteristiche che ne suggeriscono l‟origine muscolare. Infine, è stata trovata una correlazione positiva tra la capacità aerobica, misurata come VO2max e i livelli dei miRNA muscolo-specifici (MyomiRNAs) contenuti nelle EV, e una induzione di miR-133b e miR-181a-5p vescicolari dopo esercizio aerobico acuto. Nel loro insieme, i dati riportati in questa tesi suggeriscono che il muscolo rilascia, nell‟ambiente extracellulare, EV potenzialmente coinvolte nella riparazione, rigenerazione, e rimodellamento muscolare e nel cross-talk con altri organi. Ulteriori studi saranno necessari al fine di definire il contenuto e le funzioni delle EV muscolari, sia in condizioni fisiologiche che patologiche. Tali informazioni permetteranno di comprendere il ruolo delle EV rilasciate dal muscolo nella regolazione dell'omeostasi energetica e potrebbero portare allo sviluppo di nuovi biomarcatori.

Le vescicole extracellulari come nuovi mediatori di segnali muscolari

MAGGIO, SERENA
2015

Abstract

Myokines are peptides produced and secreted by skeletal muscle, with autocrine, paracrine and endocrine actions that are involved in the regulation of muscle repair or regeneration. Moreover, myokines are overexpressed during physical exercise and appear to contribute to the benefits of exercise to metabolic homeostasis, suggesting that muscle is able to send specific messages in response to various stimuli. It has recently been established that extracellular vesicles (EVs) can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs, which can be taken up by targeting cells changing their biological behavior. In addition, it has been found that myoblasts and myotubes release EVs in the extracellular environment during myogenic differentiation. The aim of this study was to investigate the type of EVs released by C2C12 cells in the early phases of myogenic differentiation process. Furthermore, we tested if the application of an in vitro exercise stimulus, such as electric pulse stimulation (EPS) to myotubes, can modify EV secretion. Finally, we evaluated whether muscle tissue releases EVs in the bloodstream and if physical exercise modulates the levels of MyomiRNAs into EVs. Our data represent new evidence that during the early phase of the myogenic differentiation process, myocytes release two types of extracellular vesicles: microvesicles with a mean diameter of 200 nm containing electron-dense material, and exosome-like vesicles showing a diameter of about 50-100 nm containing electron-transparent material. Moreover, we identify two sub-populations of exosome-like vesicles: one characterized by lower density values and high levels of RNA, and the other showing heavier floating values and abundant DNA. The results obtained also highlight that the relative ratio of these different vesicles changes during the myogenic differentiation process. It is noteworthy that treatments of recipient cells with purified vesicles highlighted that EVs are biologically active entities able to affect the activity of target cells such as myocytes and macrophages. Concerning the effects of exercise on the release of EVs, our data show that myotubes subjected to EPS increase EV secretion compared to control cells. Using Nanoparticles Tracking Analysis (NTA), we demonstrated that contracting cells release EVs that have a diameter falling in the range of exosomes. These data suggest that muscle fibers could release EVs in response to contracting activity in addition to myokines. Interestingly, we demonstrated that muscle tissue releases EV also in vivo; in fact the presence of EVs with exosomal characteristics in the bloodstream was highlighted, these EVs were positive for alpha-sarcoglycan (SGCA) and enriched for miR-206 confirming their muscle origin. Finally, a significant positive correlation was found between the aerobic fitness, measured as VO2max, and muscle-specific miRNA (MyomiRNA) expression in EVs; moreover, miR-133b and -181a-5p contained in EVs were significantly up-regulated after acute aerobic exercise. Future studies may be designed to deeply explore the content of muscle extracellular vesicles in physiological (e.g. exercise) or pathological (e.g. inactivity, atrophy, diabetes, etc.) conditions. Such efforts could provide insight into the role of EVs not only as useful biomarkers, but also as regulators of the body’s homeostasis. Taken together, this evidence suggest that muscle can release EVs in the extracellular environment which mediate cell-to-cell communication potentially involved in muscle repair, regeneration and remodeling and/or in muscle cross-talk with other organs.
2015
File in questo prodotto:
File Dimensione Formato  
phd_uniurb_257630.pdf

accesso aperto

Tipologia: DT
Licenza: Creative commons
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2629211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact