We describe the basic features of SELEN, an open source Fortran 90 program for the numerical solution of the so-called "Sea Level Equation" for a spherical, layered, non-rotating Earth with Maxwell viscoelastic rheology. The Sea Level Equation was introduced in the 70s to model the sea level variations in response to the melting of late-Pleistocene ice-sheets, but it can be also employed for predictions of geodetic quantities such as vertical and horizontal surface displacements and gravity variations on a global and a regional scale. SELEN (acronym of SEa Level EquatioN solver) is particularly oriented to scientists at their first approach to the glacial isostatic adjustment problem and, according to our experience, it can be successfully used in teaching. The current release (2.9) considerably improves the previous versions of the code in terms of computational efficiency, portability and versatility. In this paper we describe the essentials of the theory behind the Sea Level Equation, the purposes of SELEN and its implementation, and we provide practical guidelines for the use of the program. Various examples showing how SELEN can be configured to solve geodynamical problems involving past and present sea level changes and current geodetic variations are also presented and discussed.

Modeling sea level changes and geodetic variations by glacial isostasy: the improved SELEN code

SPADA, GIORGIO;GALASSI, GAIA;
2012

Abstract

We describe the basic features of SELEN, an open source Fortran 90 program for the numerical solution of the so-called "Sea Level Equation" for a spherical, layered, non-rotating Earth with Maxwell viscoelastic rheology. The Sea Level Equation was introduced in the 70s to model the sea level variations in response to the melting of late-Pleistocene ice-sheets, but it can be also employed for predictions of geodetic quantities such as vertical and horizontal surface displacements and gravity variations on a global and a regional scale. SELEN (acronym of SEa Level EquatioN solver) is particularly oriented to scientists at their first approach to the glacial isostatic adjustment problem and, according to our experience, it can be successfully used in teaching. The current release (2.9) considerably improves the previous versions of the code in terms of computational efficiency, portability and versatility. In this paper we describe the essentials of the theory behind the Sea Level Equation, the purposes of SELEN and its implementation, and we provide practical guidelines for the use of the program. Various examples showing how SELEN can be configured to solve geodynamical problems involving past and present sea level changes and current geodetic variations are also presented and discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/2643294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact