The need for express screening of the DNA damaging potential of chemicals has progressively increased over the past 20 years due to the wide number of new synthetic molecules to be evaluated, as well as the adoption of more stringent chemical regulations such as the EU REACH and risk reduction politics. In this regard, DNA diffusion assays such as the microelectrophoretic comet assay paved the way for rapid genotoxicity testing. A more significant simplification and speeding up of the experimental processes was achieved with the fast halo assay (FHA) described in the present chapter. FHA operates at the single cell level and relies on radial dispersion of the fragments of damaged DNA from intact nuclear DNA. The fragmented DNA is separated by diffusion in an alkaline solvent and is stained, visualized, and finally quantified using computer-assisted image analysis programs. This permits the rapid assessment of the extent of DNA breakage caused by different types of DNA lesions. FHA has proven to be sensitive, reliable, and flexible. This is currently one of the simplest, cheapest, and quickest assays for studying DNA damage and repair in living cells. It does not need expensive reagents or electrophoretic equipment and requires only 40 min to prepare samples for computer-based quantification. This technique can be particularly useful in rapid genotoxicity assessments and in high-throughput genotoxicity screenings.

The Fast-Halo Assay for the Detection of DNA Damage

SESTILI, PIERO;CALCABRINI, CINZIA;DIAZ, ANNA RITA;STOCCHI, VILBERTO
2017-01-01

Abstract

The need for express screening of the DNA damaging potential of chemicals has progressively increased over the past 20 years due to the wide number of new synthetic molecules to be evaluated, as well as the adoption of more stringent chemical regulations such as the EU REACH and risk reduction politics. In this regard, DNA diffusion assays such as the microelectrophoretic comet assay paved the way for rapid genotoxicity testing. A more significant simplification and speeding up of the experimental processes was achieved with the fast halo assay (FHA) described in the present chapter. FHA operates at the single cell level and relies on radial dispersion of the fragments of damaged DNA from intact nuclear DNA. The fragmented DNA is separated by diffusion in an alkaline solvent and is stained, visualized, and finally quantified using computer-assisted image analysis programs. This permits the rapid assessment of the extent of DNA breakage caused by different types of DNA lesions. FHA has proven to be sensitive, reliable, and flexible. This is currently one of the simplest, cheapest, and quickest assays for studying DNA damage and repair in living cells. It does not need expensive reagents or electrophoretic equipment and requires only 40 min to prepare samples for computer-based quantification. This technique can be particularly useful in rapid genotoxicity assessments and in high-throughput genotoxicity screenings.
978-1-4939-7185-5
978-1-4939-7187-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2648699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact