Aims: Extensively-drug-resistant Pseudomonas aeruginosa constitutes a serious threat to patients suffering from Cystic Fibrosis (CF). In these patients, P. aeruginosa lung infection is commonly treated with aminoglycosides, but treatments are largely unsuccessful due a variety of resistance mechanisms. Here we investigate the prevalence of resistance to gentamicin, amikacin and tobramycin and the main aminoglycoside resistance genes found in P. aeruginosa strains isolated at a regional CF centre. Results: A total number of 147 randomly selected P. aeruginosa strains isolated from respiratory samples sent by the Marche regional Cystic Fibrosis Centre to the Microbiology lab, were included in this study. Of these, 78 (53%) were resistant to at least one of the three aminoglycosides tested and 27% were resistant to all three antibiotics, suggesting a major involvement of a chromosome-encoded mechanism, likely MexXY-OprM efflux pump overexpression. A specific pathogenic clone (found in 7/78 of the aminoglycoside resistant strains) carrying ant(2″)-Ia was isolated over time from the same patient, suggesting a role for this additional resistance gene in the antibiotic unresponsiveness of CF patients. Conclusions: The MexXY-OprM efflux pump is confirmed as the resistance determinant involved most frequently in P. aeruginosa aminoglycoside resistance of CF lung infections, followed by the ant(2″)-Ia-encoded adenylyltransferase. The latter may prove to be a novel target for new antimicrobial combinations against P. aeruginosa.

Diffusion and Characterization of Pseudomonas aeruginosa Aminoglycoside Resistance in an Italian Regional Cystic Fibrosis Centre

Mangiaterra Gianmarco;Citterio Barbara;
2021

Abstract

Aims: Extensively-drug-resistant Pseudomonas aeruginosa constitutes a serious threat to patients suffering from Cystic Fibrosis (CF). In these patients, P. aeruginosa lung infection is commonly treated with aminoglycosides, but treatments are largely unsuccessful due a variety of resistance mechanisms. Here we investigate the prevalence of resistance to gentamicin, amikacin and tobramycin and the main aminoglycoside resistance genes found in P. aeruginosa strains isolated at a regional CF centre. Results: A total number of 147 randomly selected P. aeruginosa strains isolated from respiratory samples sent by the Marche regional Cystic Fibrosis Centre to the Microbiology lab, were included in this study. Of these, 78 (53%) were resistant to at least one of the three aminoglycosides tested and 27% were resistant to all three antibiotics, suggesting a major involvement of a chromosome-encoded mechanism, likely MexXY-OprM efflux pump overexpression. A specific pathogenic clone (found in 7/78 of the aminoglycoside resistant strains) carrying ant(2″)-Ia was isolated over time from the same patient, suggesting a role for this additional resistance gene in the antibiotic unresponsiveness of CF patients. Conclusions: The MexXY-OprM efflux pump is confirmed as the resistance determinant involved most frequently in P. aeruginosa aminoglycoside resistance of CF lung infections, followed by the ant(2″)-Ia-encoded adenylyltransferase. The latter may prove to be a novel target for new antimicrobial combinations against P. aeruginosa.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2678299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact