This dissertation presents a multi-method exploration of the relationship between digitalization and the public sector workforce in European countries. The contents are a collection of papers structured into five chapters. Chapter One introduces the research project and discusses the motivation, conceptual issues, and research strategy. Chapters 2, 3, and 4 employ different methodologies to provide a broad and variegated view of the impacts of digitalization on the public sector workforce. Chapter 5 concludes this work. Chapter 2, titled "Unveiling Patterns in Digital Government Research: A Structural Topic Modeling Approach for Literature Review," uses an innovative approach to a literature review by applying Structural Topic Modeling (STM), an unsupervised machine-learning technique. This technique is used to analyze a corpus of over 6,600 abstract texts from the Digital Government Reference Library. STM allows for the systematic analysis of large quantities of text data, enabling the identification and quantification of various topics in a selected corpus. It also allows for the mapping of the scientific discipline under review and the exploration of thematic evolution over time. The application of STM in this chapter has led to the identification of thirty topics, four of which are related to emerging automation technologies such as artificial intelligence, cloud infrastructure, blockchain, and the Internet of Things. These topics exhibit an increasing prevalence over time, indicating a growing scholarly interest in these areas. Importantly, this chapter highlights the emergence of a promising new subfield in the literature that explores the relationship between automation technologies and the public sector workforce. Chapter 3, "Digitalization and the Public Sector Workforce: A panel data exploration of 20 European countries," explores the relationship between digitalization and selected public employment indicators in 20 European countries from 2008 to 2018. According to the analysis conducted in this Chapter, digitalization does not appear to be a labor-saving technology in the European public sector in aggregate terms. However, when the data is analyzed at an occupational level, it suggests a polarization effect between high-skill and low-skill occupations. Furthermore, digitalization has a negative and significant effect on the public sector wage bill, suggesting that digitalization allows for the automation of some tasks, reducing the need for human labor with a labor cost reducing effect. This chapter provides a nuanced view of the impacts of digitalization on the public sector workforce, highlighting the complexity of this relationship. Chapter 4, "Digitalization and the Public Sector Workforce: Unbundling the Estonian Case," provides an in-depth case study of Estonia, a country that has emerged as a regional leader in e-government metrics. The chapter employs a qualitative approach, interviewing nine subject matter experts with experience in the Estonian e-government system and analyzing secondary sources to explore the effects of advanced digitalization on the Estonian public sector workforce. The analysis reveals that digitalization has significantly transformed the functions and task content of street-level bureaucrats and other public sector workers. It has led to the redesign of public sector front-office, back-office, and support services into a digitally enabled shared service model. This transformation implies a shift in the mode of service delivery and signals a fundamental change in the working dynamics of the public sector workforce. Chapter 5, “Concluding discussion”, summarizes and discusses the findings of the project and each of the individual chapters and provides observations, managerial and policy implications, highlights the limitations of the current study, and formulates potential avenues for further research.
La presente Tesi, utilizzando un approccio “multi-method”, esplora la relazione tra digitalizzazione e forza lavoro del settore pubblico nei paesi europei. L'elaborato consiste in una raccolta di articoli suddivisi in cinque capitoli. Il primo capitolo introduce il progetto di ricerca, ne discute la motivazione, il quadro concettuale e la strategia di ricerca. I capitoli 2, 3 e 4, impiegando diverse metodologie, analizzano in termini aggregati e attraverso un caso di studio approfondito, diversi aspetti della digitalizzazione del settore pubblico europeo e del suo impatto sulla forza lavoro. Il capitolo 2, utilizza un approccio innovativo alla revisione della letteratura applicando lo Structural Topic Modeling (STM), una tecnica di Unsupervised learning. Tale tecnica viene utilizzata per analizzare oltre 6.600 abstract recuperati dalla Digital Government Reference Library. Lo STM consente l'analisi sistematica di grandi quantità di dati di testo, permettendo l'identificazione e la quantificazione di vari argomenti in un insieme di pubblicazioni. Consente inoltre la mappatura della disciplina scientifica in esame e l'esplorazione della sua evoluzione tematica nel tempo. L'applicazione di STM in questo capitolo ha portato all'identificazione di trenta argomenti, quattro dei quali, relativi a tecnologie di automazione emergenti come intelligenza artificiale, infrastruttura cloud, blockchain e Internet of Things. Questi argomenti mostrano un’incidenza crescente nel tempo, indicando un aumento di interesse accademico in queste aree. È importante sottolineare che questo capitolo identifica un nuovo sottocampo promettente nella letteratura che esplora la relazione tra le tecnologie di automazione e la forza lavoro del settore pubblico. Il capitolo 3, ha come obiettivo colmare una lacuna significativa nella letteratura esistente riguardante l'impatto delle tecnologie digitali sulla forza lavoro del settore pubblico. Questo capitolo esplora la relazione tra digitalizzazione e indicatori selezionati di impiego pubblico in 20 paesi europei nel periodo 2008 - 2018. L'analisi rivela che la digitalizzazione non sembra essere una tecnologia labor-saving all’interno del settore pubblico europeo in termini aggregati. Tuttavia, quando i dati vengono analizzati a livello di categorie occupazionali, suggeriscono un effetto di polarizzazione tra mansioni altamente qualificate e mansioni poco qualificate. Inoltre, la digitalizzazione ha un effetto negativo e significativo sulle retribuzioni del settore pubblico, suggerendo che la digitalizzazione consente l'automazione di alcune attività, riducendo la necessità di manodopera umana e quindi l’incidenza dei salari sui costi complessivi. Questo capitolo fornisce una visione articolata degli impatti della digitalizzazione sulla forza lavoro del settore pubblico, evidenziando la complessità di questa relazione. Il capitolo 4, fornisce uno studio approfondito sul caso dell'Estonia, un paese che è emerso come leader regionale nelle metriche di e-government. Il capitolo utilizza un approccio qualitativo e si pone come obiettivo esplorare gli effetti della digitalizzazione avanzata sulla forza lavoro del settore pubblico estone. Nove interviste sono state condotte con esperti in materia di sistemi di e-government in Estonia. Inoltre una serie di fonti secondarie sono state analizzate per esplorare gli effetti della digitalizzazione avanzata sulla forza lavoro del settore pubblico estone. L'analisi rivela che la digitalizzazione ha trasformato in modo significativo le funzioni e il contenuto dei compiti dei street-level bureaucrats e di altri lavoratori del settore pubblico.
Digitalization in the European Public Sector: A Labor-saving technology?
AGUILERA-CASTILLO, ANDRES
2023
Abstract
This dissertation presents a multi-method exploration of the relationship between digitalization and the public sector workforce in European countries. The contents are a collection of papers structured into five chapters. Chapter One introduces the research project and discusses the motivation, conceptual issues, and research strategy. Chapters 2, 3, and 4 employ different methodologies to provide a broad and variegated view of the impacts of digitalization on the public sector workforce. Chapter 5 concludes this work. Chapter 2, titled "Unveiling Patterns in Digital Government Research: A Structural Topic Modeling Approach for Literature Review," uses an innovative approach to a literature review by applying Structural Topic Modeling (STM), an unsupervised machine-learning technique. This technique is used to analyze a corpus of over 6,600 abstract texts from the Digital Government Reference Library. STM allows for the systematic analysis of large quantities of text data, enabling the identification and quantification of various topics in a selected corpus. It also allows for the mapping of the scientific discipline under review and the exploration of thematic evolution over time. The application of STM in this chapter has led to the identification of thirty topics, four of which are related to emerging automation technologies such as artificial intelligence, cloud infrastructure, blockchain, and the Internet of Things. These topics exhibit an increasing prevalence over time, indicating a growing scholarly interest in these areas. Importantly, this chapter highlights the emergence of a promising new subfield in the literature that explores the relationship between automation technologies and the public sector workforce. Chapter 3, "Digitalization and the Public Sector Workforce: A panel data exploration of 20 European countries," explores the relationship between digitalization and selected public employment indicators in 20 European countries from 2008 to 2018. According to the analysis conducted in this Chapter, digitalization does not appear to be a labor-saving technology in the European public sector in aggregate terms. However, when the data is analyzed at an occupational level, it suggests a polarization effect between high-skill and low-skill occupations. Furthermore, digitalization has a negative and significant effect on the public sector wage bill, suggesting that digitalization allows for the automation of some tasks, reducing the need for human labor with a labor cost reducing effect. This chapter provides a nuanced view of the impacts of digitalization on the public sector workforce, highlighting the complexity of this relationship. Chapter 4, "Digitalization and the Public Sector Workforce: Unbundling the Estonian Case," provides an in-depth case study of Estonia, a country that has emerged as a regional leader in e-government metrics. The chapter employs a qualitative approach, interviewing nine subject matter experts with experience in the Estonian e-government system and analyzing secondary sources to explore the effects of advanced digitalization on the Estonian public sector workforce. The analysis reveals that digitalization has significantly transformed the functions and task content of street-level bureaucrats and other public sector workers. It has led to the redesign of public sector front-office, back-office, and support services into a digitally enabled shared service model. This transformation implies a shift in the mode of service delivery and signals a fundamental change in the working dynamics of the public sector workforce. Chapter 5, “Concluding discussion”, summarizes and discusses the findings of the project and each of the individual chapters and provides observations, managerial and policy implications, highlights the limitations of the current study, and formulates potential avenues for further research.File | Dimensione | Formato | |
---|---|---|---|
definitive_thesis_Andres_AGUILERA_CASTILLO.pdf
accesso aperto
Descrizione: definitive_thesis_Andres_AGUILERA_CASTILLO
Tipologia:
DT
Licenza:
Non pubblico
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.