Mass Spectrometry (MS) has emerged as a fundamental analytical technique utilized for determining molecular mass by measuring ions' mass-to-charge ratio (m/z), applicable in both gas and liquid phases. Widely adopted across scientific disciplines, MS has signed significant advancements with the introduction of high-resolution capabilities, particularly in the realm of Biology. This advancement has propelled the integration of MS into metabolomics and proteomics, two omics sciences that have revolutionized the understanding of biological systems. Metabolomics, a branch of omics sciences, focuses on elucidating the comprehensive profile of metabolites within biological samples, offering insights into metabolic pathways and alterations under different conditions such as physiological, diseases or therapeutic context. Proteomics, on the other hand, delves into the entirety of proteins within biological systems, aiming to identify, quantify, and investigate their functions, interactions, and modifications. This multidimensional approach provides a holistic understanding of biological processes and disorders. In this thesis, a comprehensive investigation utilizing both proteomic and metabolomic analyses was conducted to uncover alterations in Ataxia Telangiectasia (A-T), a rare autosomal multisystemic disorder resulting from mutations in the ATM gene. Despite the absence of a cure, promising outcomes have been observed in A-T patients treated with dexamethasone in clinical trials. The study focused on exploring the role of ATM splicing variants, including ATM 4-53 and “in silico” designed ATM SINT, in A-T cellular models and their potential in reverting A-T phenotype. High-resolution MS revealed disturbances in various cellular processes in A-T cells, including glycolytic pathways, nucleotide metabolism, and protein homeostasis, along with chaperone activity and inflammatory states. ATM variants exhibited the capacity to modulate these processes, with ATM SINT demonstrating superior efficacy compared to ATM 45-3, offering promise for gene therapy in A-T treatment. Additionally, machine learning on metabolite fingerprints was employed to evaluate dysregulated biological processes in A-T cells, shedding light on metabolic pathways beyond known mechanisms. This approach effectively predicted metabolite responses and unveiled new affected metabolite groups, providing valuable insights into the pathology of A-T and potential therapeutic targets. In this thesis, the metabolomic and proteomic studies, were also used to discover the impact of redox regulation on endothelial cells under hypoxia treated with a synthetized antioxidant molecule, named I-152 and, to elucidate the pathophysiology of phenylketonuria. Redox regulation was found to influence metabolic profiles interconnected with the glutathione system and redox couples NAD(P)+/NAD(P)H in endothelial cells, suggesting potential therapeutic avenues for modulating hypoxia-induced cellular responses. In the study of phenylketonuria, analysis revealed an unprecedented progressive recovery of myelin basic protein expression in aged phenylketonuric mice, shedding light on potential therapeutic targets for this disorder. Furthermore, MS was utilized to identify disulfide targets in the SARS-CoV-2 spike protein, demonstrating the potential of thiol compounds (chemically synthesized) to interfere with viral entry and replication by inducing a redox switch in the receptor binding domain, hindering viral protein folding and maturation. All these findings underscore the versatility of MS in elucidating complex biological processes and identifying therapeutic targets across various disciplines, paving the way for further research and advancements in biomedical sciences.
La spettrometria di massa (MS) è emersa come tecnica analitica fondamentale utilizzata per determinare la massa molecolare misurando il rapporto massa-carica degli ioni (m/z), applicabile sia nelle fasi gassose che liquide. Ampiamente adottata in diverse discipline scientifiche, la MS ha segnato significativi progressi con l'introduzione di capacità ad alta risoluzione, particolarmente nel campo della Biologia. Questo progresso ha favorito l'integrazione della MS nella metabolomica e nella proteomica, due scienze omiche che hanno rivoluzionato la comprensione dei sistemi biologici. La metabolomica, un ramo delle scienze omiche, si concentra sull'elucidazione del profilo completo dei metaboliti all'interno di campioni biologici, offrendo conoscenze sui percorsi metabolici e sulle alterazioni in diverse condizioni come contesti fisiologici, patologici o terapeutici. La proteomica, d'altro canto, esplora l'intera gamma di proteine all'interno dei sistemi biologici, con l'obiettivo di identificarle, quantificarle e studiarne le funzioni, le interazioni e le modificazioni. Questo approccio multidimensionale fornisce una comprensione olistica dei processi biologici e delle patologie. In questa tesi è stata condotta un'indagine completa utilizzando sia analisi proteomiche che metabolomiche per scoprire alterazioni nella Atassia Telangiectasia (A-T), una rara malattia multisistemica autosomica dovuta a mutazioni nel gene ATM. Nonostante l'assenza di una cura, sono stati osservati risultati promettenti nei pazienti affetti da A-T trattati con desametasone in studi clinici. Lo studio si è concentrato sull'esplorare il ruolo delle varianti di splicing di ATM, tra cui ATM 4-53 e ATM SINT progettato "in silico", nei modelli cellulari di A-T e sul loro potenziale nel revertere il fenotipo di A-T. La MS ad alta risoluzione ha rivelato disturbi in vari processi cellulari nelle cellule di A-T, tra cui vie glicolitiche, metabolismo dei nucleotidi e omeostasi proteica, insieme all'attività chaperone e agli stati infiammatori. Le varianti di ATM hanno mostrato la capacità di modulare questi processi, con ATM SINT che ha dimostrato un'efficacia superiore rispetto ad ATM 45-3, offrendo promesse per la terapia genica nel trattamento dell'A-T. Inoltre, è stato utilizzato il machine learning sulle impronte metaboliche dei metaboliti per valutare processi biologici disregolati nelle cellule di A-T, gettando luce su percorsi metabolici al di là dei meccanismi conosciuti. Questo approccio ha predetto efficacemente le risposte metabolitiche e ha svelato nuovi gruppi di metaboliti interessati, fornendo preziose informazioni sulla patologia di A-T e sui potenziali bersagli terapeutici. In questa tesi, gli studi metabolomici e proteomici sono stati utilizzati anche per scoprire l'impatto della regolazione redox sulle cellule endoteliali in ipossia trattate con una molecola antiossidante sintetizzata, chiamata I-152, e per elucidare la fisiopatologia della fenilchetonuria. È emerso che la regolazione redox influisce sui profili metabolici interconnessi con il sistema del glutatione e le coppie redox NAD(P)+/NAD(P)H nelle cellule endoteliali, suggerendo possibili vie terapeutiche per modulare le risposte cellulari indotte da ipossia. Nello studio della fenilchetonuria, l'analisi ha rivelato un progressivo recupero senza precedenti dell'espressione della proteina basica della mielina nei topi fenilchetonurici anziani, gettando luce su potenziali bersagli terapeutici per questa patologia. Inoltre, la MS è stata utilizzata per identificare i bersagli disolfuro nella proteina spike del virus SARS-CoV-2, dimostrando il potenziale dei composti tiolici (sintetizzati chimicamente) nel interferire con l'ingresso virale e la replicazione inducendo un'interruzione redox nel dominio di legame al recettore, ostacolando il ripiegamento e la maturazione della proteina virale.
Exploring cellular complexity by mass spectrometry-based metabolomics and proteomics in health, disease, and therapeutic contexts
BIANCUCCI, FEDERICA
2024
Abstract
Mass Spectrometry (MS) has emerged as a fundamental analytical technique utilized for determining molecular mass by measuring ions' mass-to-charge ratio (m/z), applicable in both gas and liquid phases. Widely adopted across scientific disciplines, MS has signed significant advancements with the introduction of high-resolution capabilities, particularly in the realm of Biology. This advancement has propelled the integration of MS into metabolomics and proteomics, two omics sciences that have revolutionized the understanding of biological systems. Metabolomics, a branch of omics sciences, focuses on elucidating the comprehensive profile of metabolites within biological samples, offering insights into metabolic pathways and alterations under different conditions such as physiological, diseases or therapeutic context. Proteomics, on the other hand, delves into the entirety of proteins within biological systems, aiming to identify, quantify, and investigate their functions, interactions, and modifications. This multidimensional approach provides a holistic understanding of biological processes and disorders. In this thesis, a comprehensive investigation utilizing both proteomic and metabolomic analyses was conducted to uncover alterations in Ataxia Telangiectasia (A-T), a rare autosomal multisystemic disorder resulting from mutations in the ATM gene. Despite the absence of a cure, promising outcomes have been observed in A-T patients treated with dexamethasone in clinical trials. The study focused on exploring the role of ATM splicing variants, including ATM 4-53 and “in silico” designed ATM SINT, in A-T cellular models and their potential in reverting A-T phenotype. High-resolution MS revealed disturbances in various cellular processes in A-T cells, including glycolytic pathways, nucleotide metabolism, and protein homeostasis, along with chaperone activity and inflammatory states. ATM variants exhibited the capacity to modulate these processes, with ATM SINT demonstrating superior efficacy compared to ATM 45-3, offering promise for gene therapy in A-T treatment. Additionally, machine learning on metabolite fingerprints was employed to evaluate dysregulated biological processes in A-T cells, shedding light on metabolic pathways beyond known mechanisms. This approach effectively predicted metabolite responses and unveiled new affected metabolite groups, providing valuable insights into the pathology of A-T and potential therapeutic targets. In this thesis, the metabolomic and proteomic studies, were also used to discover the impact of redox regulation on endothelial cells under hypoxia treated with a synthetized antioxidant molecule, named I-152 and, to elucidate the pathophysiology of phenylketonuria. Redox regulation was found to influence metabolic profiles interconnected with the glutathione system and redox couples NAD(P)+/NAD(P)H in endothelial cells, suggesting potential therapeutic avenues for modulating hypoxia-induced cellular responses. In the study of phenylketonuria, analysis revealed an unprecedented progressive recovery of myelin basic protein expression in aged phenylketonuric mice, shedding light on potential therapeutic targets for this disorder. Furthermore, MS was utilized to identify disulfide targets in the SARS-CoV-2 spike protein, demonstrating the potential of thiol compounds (chemically synthesized) to interfere with viral entry and replication by inducing a redox switch in the receptor binding domain, hindering viral protein folding and maturation. All these findings underscore the versatility of MS in elucidating complex biological processes and identifying therapeutic targets across various disciplines, paving the way for further research and advancements in biomedical sciences.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato_Federica Biancucci_definitiva.pdf
embargo fino al 09/07/2025
Descrizione: Tesi di dottorato_Federica BIancucci_
Tipologia:
DT
Licenza:
Non pubblico
Dimensione
14.7 MB
Formato
Adobe PDF
|
14.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.