Stroke is characterized by massive inflammation in areas surrounding the injury that magnifies damage to the brain. The liver X receptors (LXRs) are nuclear receptors that regulate cholesterol, lipid, and glucose metabolism. Synthetic LXR agonists have potent anti-inflammatory properties in a variety of settings, including neuroinflammation. However, the ability of LXR agonists to suppress stroke-associated inflammation has not been evaluated. Here, we have used time-lapse magnetic resonance imaging (MRI) to show that a single dose of an LXR ligand administered post-injury dramatically reduces brain damage in a model of acute brain ischemia. Neuroprotection was associated with suppression of neuroinflammation.
Treatment with LXR agonists after focal cerebral ischemia prevents brain damage.
CIMINO, MAURO;
2008
Abstract
Stroke is characterized by massive inflammation in areas surrounding the injury that magnifies damage to the brain. The liver X receptors (LXRs) are nuclear receptors that regulate cholesterol, lipid, and glucose metabolism. Synthetic LXR agonists have potent anti-inflammatory properties in a variety of settings, including neuroinflammation. However, the ability of LXR agonists to suppress stroke-associated inflammation has not been evaluated. Here, we have used time-lapse magnetic resonance imaging (MRI) to show that a single dose of an LXR ligand administered post-injury dramatically reduces brain damage in a model of acute brain ischemia. Neuroprotection was associated with suppression of neuroinflammation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.