The NADH-linked substrates pyruvate, L-glutamine, and beta-hydroxybutyrate, while enhancing the rate of oxygen consumption, also increased the formation of DNA single-strand breaks induced by tert-butylhydroperoxide in intact U937 cells, A cause-effect relationship between these two parameters was established by showing that: (a) rotenone, an inhibitor of complex I, abolished respiration and prevented the enhancement of the DNA-damaging response under all the above circumstances; (b) the membrane-impermeant, complex I-activating substrate L-malate gave similar results in permeabilized cells; and (c) none of the NADH-linked substrates affected the DNA-damaging response to tert-butylhydroperoxide in respiration-deficient cells. Stimulation of electron transport potentiated the DNA-cleaving ability of tert-butylhydroperoxide via a process involving enforced mitochondrial calcium accumulation in the absence of a discernible elevation in the cytosolic concentration of free Ca2+. Finally, mitochondrial calcium was found to promote the mitochondrial formation of DNA-damaging levels of hydrogen peroxide. In conclusion, the data herein presented define a previously unexpected role of respiratory substrates in the control of the deleterious effects of an organic hydroperoxide at the level of genomic DNA. The enhanced DNA cleavage mediated by NADH-linked substrates in response to tert-butylhydroperoxide would appear to depend on a sequence of events involving stimulation of electron transport, mitochondrial accumulation of Ca2+, and mitochondrial formation of DNA-damaging levels of hydrogen peroxide via a Ca2+-dependent process.

Stimulation of oxygen consumption promotes mitochondrial calcium accumulation, a process associated with, and causally linked to, enhanced formation of tert-butylhydroperoxide-induced DNA single-strand breaks.

GUIDARELLI, ANDREA;CANTONI, ORAZIO
1997-01-01

Abstract

The NADH-linked substrates pyruvate, L-glutamine, and beta-hydroxybutyrate, while enhancing the rate of oxygen consumption, also increased the formation of DNA single-strand breaks induced by tert-butylhydroperoxide in intact U937 cells, A cause-effect relationship between these two parameters was established by showing that: (a) rotenone, an inhibitor of complex I, abolished respiration and prevented the enhancement of the DNA-damaging response under all the above circumstances; (b) the membrane-impermeant, complex I-activating substrate L-malate gave similar results in permeabilized cells; and (c) none of the NADH-linked substrates affected the DNA-damaging response to tert-butylhydroperoxide in respiration-deficient cells. Stimulation of electron transport potentiated the DNA-cleaving ability of tert-butylhydroperoxide via a process involving enforced mitochondrial calcium accumulation in the absence of a discernible elevation in the cytosolic concentration of free Ca2+. Finally, mitochondrial calcium was found to promote the mitochondrial formation of DNA-damaging levels of hydrogen peroxide. In conclusion, the data herein presented define a previously unexpected role of respiratory substrates in the control of the deleterious effects of an organic hydroperoxide at the level of genomic DNA. The enhanced DNA cleavage mediated by NADH-linked substrates in response to tert-butylhydroperoxide would appear to depend on a sequence of events involving stimulation of electron transport, mitochondrial accumulation of Ca2+, and mitochondrial formation of DNA-damaging levels of hydrogen peroxide via a Ca2+-dependent process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/1882135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact