The evolution of the oceanic Maghrebian Flysch Basin and its continuation in the Southern Apennines was studied by reconstructing mainly representative stratigraphic successions. In all sectors a common evolution has been identified. Rifting and drifting phases are indicated by remnants of oceanic crust, Jurassic limestones, Cretaceous–Palaeogene turbiditic and pelagic deposits. The pre-orogenic sedimentation was mainly controlled by extensional tectonics and sea-level changes. The occurrence of a generalized foredeep stage since the Early Miocene is testified by thick siliciclastic and volcaniclastic syn-orogenic flysch successions. The deformation of the oceanic areas began in the Burdigalian and the resulting nappes were stacked in the growing chains. During the Middle Miocene, piggy-back basins developed and the building of the chains was accomplished in the Late Tortonian. Areal distribution and ages of flysch deposits represent an important tool for the study of the diachronous growth of the accretionary wedges.

Tectono-sedimentary evolution of the southern branch of the Western Tethys (Magrebian Flysch Basin and Lucanian Ocean): consequence for Western Mediterranean geodynamics.

GUERRERA, FRANCESCO;PERRONE, VINCENZO;TRAMONTANA, MARIO
2005

Abstract

The evolution of the oceanic Maghrebian Flysch Basin and its continuation in the Southern Apennines was studied by reconstructing mainly representative stratigraphic successions. In all sectors a common evolution has been identified. Rifting and drifting phases are indicated by remnants of oceanic crust, Jurassic limestones, Cretaceous–Palaeogene turbiditic and pelagic deposits. The pre-orogenic sedimentation was mainly controlled by extensional tectonics and sea-level changes. The occurrence of a generalized foredeep stage since the Early Miocene is testified by thick siliciclastic and volcaniclastic syn-orogenic flysch successions. The deformation of the oceanic areas began in the Burdigalian and the resulting nappes were stacked in the growing chains. During the Middle Miocene, piggy-back basins developed and the building of the chains was accomplished in the Late Tortonian. Areal distribution and ages of flysch deposits represent an important tool for the study of the diachronous growth of the accretionary wedges.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/1882602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 146
social impact