The adult hippocampal neurogenesis is affected by vitamin E deficiency. In the present investigation we examined if neural precursor proliferation, newborn cell survival or both are altered by vitamin E deficiency. 5-Bromo-2′-deoxyuridine (BrdU) was employed as a marker of proliferating cells. BrdU-labelled cells were revealed 1 and 30 days after BrdU administration in order to evaluate proliferation and newborn cell survival, respectively. Cell proliferation decreased in controls from juvenile to adult age, and the decrease was lesser in vitamin E deficiency. Thus we found a higher number of proliferating cells in vitamin E-deficient rats than in age-matched controls at 5 months of age. Comparing the number of BrdU-positive cells between 1 and 30 days after the last BrdU injection revealed a remarkable decrease in all groups; this is the greatest in vitamin E-deficient rats and the lowest in control rats. Consistently cell death in the dentate gyrus, assessed by TUNEL technique, was found to decrease from 1 to 5 months of age, but at 5 months it was significantly higher in vitamin E-deficient rats than in age-matched controls. These data show that vitamin E deficiency enhances neural precursor proliferation and cell death during adult neurogenesis.
Neural precursor proliferation and newborn cell survival in the adult rat dentate gyrus are affected by vitamin E deficiency
CIARONI, SANDRA;CECCHINI, TIZIANA;FERRI, PAOLA;CUPPINI, RICCARDO;AMBROGINI, PATRIZIA;BENEDETTI, SERENA;DEL GRANDE, PAOLO;PAPA, STEFANO
2002
Abstract
The adult hippocampal neurogenesis is affected by vitamin E deficiency. In the present investigation we examined if neural precursor proliferation, newborn cell survival or both are altered by vitamin E deficiency. 5-Bromo-2′-deoxyuridine (BrdU) was employed as a marker of proliferating cells. BrdU-labelled cells were revealed 1 and 30 days after BrdU administration in order to evaluate proliferation and newborn cell survival, respectively. Cell proliferation decreased in controls from juvenile to adult age, and the decrease was lesser in vitamin E deficiency. Thus we found a higher number of proliferating cells in vitamin E-deficient rats than in age-matched controls at 5 months of age. Comparing the number of BrdU-positive cells between 1 and 30 days after the last BrdU injection revealed a remarkable decrease in all groups; this is the greatest in vitamin E-deficient rats and the lowest in control rats. Consistently cell death in the dentate gyrus, assessed by TUNEL technique, was found to decrease from 1 to 5 months of age, but at 5 months it was significantly higher in vitamin E-deficient rats than in age-matched controls. These data show that vitamin E deficiency enhances neural precursor proliferation and cell death during adult neurogenesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.