We present a formal view of cryptography that overcomes the usual assumptions of formal models for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao adversary model. In our framework, equivalence among formal cryptographic expressions is parameterized by a computational adversary that may exploit weaknesses of the cryptosystem to cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show that in the restricted setting of ideal cryptosystems, for which the probability of guessing information that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is limited to the allowed behaviors of the Dolev-Yao adversary.

Approximating Imperfect Cryptography in a Formal Model

ALDINI, ALESSANDRO;
2004

Abstract

We present a formal view of cryptography that overcomes the usual assumptions of formal models for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao adversary model. In our framework, equivalence among formal cryptographic expressions is parameterized by a computational adversary that may exploit weaknesses of the cryptosystem to cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show that in the restricted setting of ideal cryptosystems, for which the probability of guessing information that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is limited to the allowed behaviors of the Dolev-Yao adversary.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11576/1892537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact