We present a formal view of cryptography that overcomes the usual assumptions of formal models for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao adversary model. In our framework, equivalence among formal cryptographic expressions is parameterized by a computational adversary that may exploit weaknesses of the cryptosystem to cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show that in the restricted setting of ideal cryptosystems, for which the probability of guessing information that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is limited to the allowed behaviors of the Dolev-Yao adversary.
Titolo: | Approximating Imperfect Cryptography in a Formal Model |
Autori: | |
Data di pubblicazione: | 2004 |
Abstract: | We present a formal view of cryptography that overcomes the usual assumptions of formal models for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao adversary model. In our framework, equivalence among formal cryptographic expressions is parameterized by a computational adversary that may exploit weaknesses of the cryptosystem to cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show that in the restricted setting of ideal cryptosystems, for which the probability of guessing information that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is limited to the allowed behaviors of the Dolev-Yao adversary. |
Handle: | http://hdl.handle.net/11576/1892537 |
Appare nelle tipologie: | 4.1 Contributo Atti di Convegno (Proceeding) |