Fibroblast growth factor 2 (FGF2) is involved in hippocampus-dependent learning. In this study, the effects of FGF2 on the excitability were investigated in granule cells of rat dentate gyrus. Hippocampal slices were used to perform patch clamp recordings in granule cells. Extracellularly applied FGF2 early quenched the depolarization-induced repetitive firing, suggesting a decreased excitability under these conditions. Consistently, transient and sustained voltage-gated K(+) currents decreased in a dose-dependent manner, repolarization phase of action potential was slowed down, afterhyperpolarization was reduced, and membrane resistance was decreased. These effects were not mediated by tyrosine kinase FGF2 receptors. Moreover, an involvement of G protein signaling was ruled out, as well as an intracellular action of FGF2. Considering the relationship between FGF2 and hippocampal functions, the modulation of neuron excitability by activity-driven FGF2 release may be regarded as a part of a homeostatic mechanism of self-regulation of hippocampal activity.

FGF2 modulates the voltage-dependent K+ current and changes excitability of rat dentate gyrus granule cells.

AMBROGINI, PATRIZIA;LATTANZI, DAVIDE;CIUFFOLI, STEFANO;CUPPINI, RICCARDO
2009

Abstract

Fibroblast growth factor 2 (FGF2) is involved in hippocampus-dependent learning. In this study, the effects of FGF2 on the excitability were investigated in granule cells of rat dentate gyrus. Hippocampal slices were used to perform patch clamp recordings in granule cells. Extracellularly applied FGF2 early quenched the depolarization-induced repetitive firing, suggesting a decreased excitability under these conditions. Consistently, transient and sustained voltage-gated K(+) currents decreased in a dose-dependent manner, repolarization phase of action potential was slowed down, afterhyperpolarization was reduced, and membrane resistance was decreased. These effects were not mediated by tyrosine kinase FGF2 receptors. Moreover, an involvement of G protein signaling was ruled out, as well as an intracellular action of FGF2. Considering the relationship between FGF2 and hippocampal functions, the modulation of neuron excitability by activity-driven FGF2 release may be regarded as a part of a homeostatic mechanism of self-regulation of hippocampal activity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2301118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact