Ongoing sea level variations and vertical land movements measured by tide gauges and continuous GPS stations along the Italian coasts stem from several factors acting on different spatiotemporal scales. Conversely to tectonics and anthropogenic effects, which are characterized by a heterogeneous signal, the adjustment of solid Earth and geoid to the melting of the late– Pleistocene ice sheets results in a smooth long–wavelength pattern of sea level variation and vertical deformation across the Mediterranean, mostly driven by the melt water load added to the basin. In this work we define upper and lower bounds of the effects of glacial isostatic adjustment (GIA) on current sea level variations and vertical ground movements along the coasts of Italy. For plausible mantle viscosity profiles we explore to what extent the spatial variability of observed rates may be attributed to delayed isostatic recovery of both solid Earth and geoid. In addition, we show that long–wavelength patterns of sea level change are tuned by the effects of GIA, and that coastal retreat in Italy is broadly correlated with the expected ongoing rates of post–glacial sea level variations.

Post glacial readjustment, sea level variations, subsidence and erosion along the Italian coasts

STOCCHI P;SPADA, GIORGIO;
2009

Abstract

Ongoing sea level variations and vertical land movements measured by tide gauges and continuous GPS stations along the Italian coasts stem from several factors acting on different spatiotemporal scales. Conversely to tectonics and anthropogenic effects, which are characterized by a heterogeneous signal, the adjustment of solid Earth and geoid to the melting of the late– Pleistocene ice sheets results in a smooth long–wavelength pattern of sea level variation and vertical deformation across the Mediterranean, mostly driven by the melt water load added to the basin. In this work we define upper and lower bounds of the effects of glacial isostatic adjustment (GIA) on current sea level variations and vertical ground movements along the coasts of Italy. For plausible mantle viscosity profiles we explore to what extent the spatial variability of observed rates may be attributed to delayed isostatic recovery of both solid Earth and geoid. In addition, we show that long–wavelength patterns of sea level change are tuned by the effects of GIA, and that coastal retreat in Italy is broadly correlated with the expected ongoing rates of post–glacial sea level variations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2302461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact