PML/RARalpha is the leukemogenetic protein of acute promyelocytic leukemia (APL). Treatment with retinoic acid (RA) induces degradation of PML/RARalpha, differentiation of leukaemic blasts, and disease remission. However, RA resistance arises during RA treatment of APL patients. To investigate the phenomenon of RA resistance in APL, we generated RA-resistant sublines from APL-derived NB4 cells. The NB4.007/6 RA-resistant subline does not express the PML/RARalpha protein, although its mRNA is detectable at levels comparable to those of the parental cell line. In vitro degradation assays showed that the half-life of PML/RARalpha is less than 30 minutes in NB4.007/6 and longer than 3 hours in NB4. Treatment of NB4.007/6 cells with the proteasome inhibitors LLnL and lactacystin partially restored PML/RARalpha protein expression and resulted in a partial release of the RA-resistant phenotype. Similarly, forced expression of PML/RARalpha, but not RARalpha, into the NB4/007.6 cells restored sensitivity to RA treatment to levels comparable to those of the NB4 cells. These results indicate that constitutive degradation of PML/RARalpha protein may lead to RA resistance and that PML/RARalpha expression is crucial to convey RA sensitivity to APL cells.

Constitutive degradation of PML/RARalpha through the proteasome pathway mediates retinoic acid resistance

FANELLI, MIRCO;
1999-01-01

Abstract

PML/RARalpha is the leukemogenetic protein of acute promyelocytic leukemia (APL). Treatment with retinoic acid (RA) induces degradation of PML/RARalpha, differentiation of leukaemic blasts, and disease remission. However, RA resistance arises during RA treatment of APL patients. To investigate the phenomenon of RA resistance in APL, we generated RA-resistant sublines from APL-derived NB4 cells. The NB4.007/6 RA-resistant subline does not express the PML/RARalpha protein, although its mRNA is detectable at levels comparable to those of the parental cell line. In vitro degradation assays showed that the half-life of PML/RARalpha is less than 30 minutes in NB4.007/6 and longer than 3 hours in NB4. Treatment of NB4.007/6 cells with the proteasome inhibitors LLnL and lactacystin partially restored PML/RARalpha protein expression and resulted in a partial release of the RA-resistant phenotype. Similarly, forced expression of PML/RARalpha, but not RARalpha, into the NB4/007.6 cells restored sensitivity to RA treatment to levels comparable to those of the NB4 cells. These results indicate that constitutive degradation of PML/RARalpha protein may lead to RA resistance and that PML/RARalpha expression is crucial to convey RA sensitivity to APL cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2506631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact