A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600–1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900  Hz)3, of Ω3<0.32, assuming a value of the Hubble parameter of h100=0.71. These new limits are a factor of seven better than the previous best in this frequency band.

Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz

BRANCHESI, MARICA;CESARINI, ELISABETTA;GUIDI, GIANLUCA MARIA;MARTELLI, FILIPPO;PIERGIOVANNI, FRANCESCO;STURANI, RICCARDO;VETRANO, FLAVIO;VICERE', ANDREA;
2012

Abstract

A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600–1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900  Hz)3, of Ω3<0.32, assuming a value of the Hubble parameter of h100=0.71. These new limits are a factor of seven better than the previous best in this frequency band.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2513197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact