Late Oligocene to Early Miocene relative paleointensity (RPI) proxies can be correlated from the equatorial Pacific (IODP Site U1334 and ODP Site 1218) to the South Atlantic (ODP Site 1090). Age models are constrained by magnetic polarity stratigraphy through correlation to a common geomagnetic polarity timescale. The RPI records do not contain significant power at specific (orbital) frequencies, and hence there is no significant coherency between RPI proxies and the normalizers used to construct the proxies, although orbital power is present in some normalizers. There is no obvious control on RPI proxies from mean sedimentation rate within polarity chrons, magnetic grain size proxies or magnetic concentration parameters. The salient test is whether the equatorial Pacific records can be correlated one to another, and to the records from the South Atlantic. All records are dominated by RPI minima at polarity reversals, as expected, although the comparison within polarity chrons is compelling enough to conclude that the intensity of the Earth’s axial dipole is being recorded. This is supported by the fit of RPI data from Sites U1334 and 1218 after correlation of the two sites using diverse core-scanning data, rather than polarity reversals alone. We do not see a consistent relationship between polarity-chron duration and mean RPI, and no consistent skewness (“saw-tooth” pattern) for RPI within polarity chrons. Stacks of RPI records for 17.5–26.5 Ma include long-term changes in RPI on Myr timescales that are superimposed on RPI minima associated with polarity reversals, and shorter-term variations in RPI with an apparent pacing of ∼50 kyr. The equatorial Pacific to South Atlantic correlations indicate that RPI can be used as a (global) stratigraphic tool in pre-Quaternary sediments with typical pelagic sedimentation rates of a few cm/kyr.

Oligocene–Miocene relative (geomagnetic) paleointensity correlated from the equatorial Pacific (IODP Site U1334 and ODP Site 1218) to the South Atlantic (ODP Site 1090)

LANCI, LUCA
2014-01-01

Abstract

Late Oligocene to Early Miocene relative paleointensity (RPI) proxies can be correlated from the equatorial Pacific (IODP Site U1334 and ODP Site 1218) to the South Atlantic (ODP Site 1090). Age models are constrained by magnetic polarity stratigraphy through correlation to a common geomagnetic polarity timescale. The RPI records do not contain significant power at specific (orbital) frequencies, and hence there is no significant coherency between RPI proxies and the normalizers used to construct the proxies, although orbital power is present in some normalizers. There is no obvious control on RPI proxies from mean sedimentation rate within polarity chrons, magnetic grain size proxies or magnetic concentration parameters. The salient test is whether the equatorial Pacific records can be correlated one to another, and to the records from the South Atlantic. All records are dominated by RPI minima at polarity reversals, as expected, although the comparison within polarity chrons is compelling enough to conclude that the intensity of the Earth’s axial dipole is being recorded. This is supported by the fit of RPI data from Sites U1334 and 1218 after correlation of the two sites using diverse core-scanning data, rather than polarity reversals alone. We do not see a consistent relationship between polarity-chron duration and mean RPI, and no consistent skewness (“saw-tooth” pattern) for RPI within polarity chrons. Stacks of RPI records for 17.5–26.5 Ma include long-term changes in RPI on Myr timescales that are superimposed on RPI minima associated with polarity reversals, and shorter-term variations in RPI with an apparent pacing of ∼50 kyr. The equatorial Pacific to South Atlantic correlations indicate that RPI can be used as a (global) stratigraphic tool in pre-Quaternary sediments with typical pelagic sedimentation rates of a few cm/kyr.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2590979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact