Observations from the global array of tide gauges show that global sea- level has been rising at an average rate of 1.5-2 mm/yr during the last ~150 years [Douglas 1991, Spada and Galassi 2012]. Although a global sea-level acceleration was initially ruled out [Douglas 1992], subse- quent studies [Douglas 1997, Church and White 2006, Jevrejeva et al. 2008, Church and White 2011] have coherently proposed values of ~1 mm/year/century [Olivieri and Spada 2013]. More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, these could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise [Gehrels and Woodworth 2013], while locally they result from ocean circulation anomalies, steric effects and wind stress [Bromirski et al. 2011, Merrifield 2011]. Although iso- static readjustment affects the local rates of secular sea-level change [Milne and Mitrovica 1998, Peltier 2004], a possible impact on regional acceleration has been so far discounted [Douglas 1992, Jevrejeva et al. 2008, Woodworth et al. 2009] since the process evolves on a millennium time scale [Turcotte and Schubert 2002]. Here we report a previously un- noticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration.

Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment

SPADA, GIORGIO;
2014-01-01

Abstract

Observations from the global array of tide gauges show that global sea- level has been rising at an average rate of 1.5-2 mm/yr during the last ~150 years [Douglas 1991, Spada and Galassi 2012]. Although a global sea-level acceleration was initially ruled out [Douglas 1992], subse- quent studies [Douglas 1997, Church and White 2006, Jevrejeva et al. 2008, Church and White 2011] have coherently proposed values of ~1 mm/year/century [Olivieri and Spada 2013]. More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, these could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise [Gehrels and Woodworth 2013], while locally they result from ocean circulation anomalies, steric effects and wind stress [Bromirski et al. 2011, Merrifield 2011]. Although iso- static readjustment affects the local rates of secular sea-level change [Milne and Mitrovica 1998, Peltier 2004], a possible impact on regional acceleration has been so far discounted [Douglas 1992, Jevrejeva et al. 2008, Woodworth et al. 2009] since the process evolves on a millennium time scale [Turcotte and Schubert 2002]. Here we report a previously un- noticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2611594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact