On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36+5−4M⊙ and 29+4−4M⊙; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410+160−180  Mpc, corresponding to a redshift 0.09+0.03−0.04 assuming standard cosmology. The source location is constrained to an annulus section of 610  deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62+4−4M⊙ and spin 0.67+0.05−0.07. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

Properties of the Binary Black Hole Merger GW150914

GUIDI, GIANLUCA MARIA;MARTELLI, FILIPPO;MONTANI, MATTEO;PIERGIOVANNI, FRANCESCO;VETRANO, FLAVIO;VICERE', ANDREA;
2016

Abstract

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36+5−4M⊙ and 29+4−4M⊙; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410+160−180  Mpc, corresponding to a redshift 0.09+0.03−0.04 assuming standard cosmology. The source location is constrained to an annulus section of 610  deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62+4−4M⊙ and spin 0.67+0.05−0.07. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
File in questo prodotto:
File Dimensione Formato  
ParameterEstimation_GW150914_PhysRevLett.116.241102.pdf

accesso aperto

Descrizione: Parameter estimation for GW150914
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2634870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 683
  • ???jsp.display-item.citation.isi??? 812
social impact