We studied a high-resolution multiproxy data set, including magnetic susceptibility (MS), CaCO3 content, and stable isotopes (δ18O and δ13C), from the stratigraphic interval covering the uppermost Maastrichtian and the lower Danian, represented by the pelagic limestones of the Scaglia Rossa Formation continuously exposed in the classic sections of the Bottaccione Gorge and the Contessa Highway near Gubbio, Italy. Variations in all the proxy series are periodic and reflect astronomically forced climate changes (i.e. Milankovitch cycles). In particular, the MS proxy reflects variations in the terrigenous dust input in this pelagic, deep-marine environment. We speculate that the dust is mainly eolian in origin and that the availability and transport of dust are influenced by variations in the vegetation cover on the Maastrichtian-Paleocene African or Asian zone, which were respectively located at tropical to subtropical latitudes to the south or far to the east of the western Tethyan Umbria-Marche Basin, and were characterized by monsoonal circulation. The dynamics of monsoonal circulation are known to be strongly dependent on precession-driven and obliquity- driven changes in insolation. We propose that a threshold mechanism in the vegetation coverage may explain eccentricity-related periodicities in the terrigenous eolian dust input. Other mechanisms, both oceanic and terrestrial, that depend on the precession amplitude modulated by eccentricity, can be evoked together with the variation of dust influx in the western Tethys to explain the detected eccentricity periodicity in the δ13C record. Our interpretations of the δ18O and MS records suggest a warming event ∼400 k.y. prior to the Cretaceous-Paleogene (K-Pg) boundary, and a period of climatic and environmental instability in the earliest Danian. Based on these multiproxy phase relationships, we propose an astronomical tuning for these sections; this leads us to an estimate of the timing and duration of several late Maastrichtian and Danian biostratigraphic and magnetostratigraphic events.

High-resolution multiproxy cyclostratigraphic analysis of environmental and climatic events across the Cretaceous-Paleogene boundary in the classic pelagic succession of Gubbio (Italy)

COCCIONI, RODOLFO;FRONTALINI, FABRIZIO;
2016

Abstract

We studied a high-resolution multiproxy data set, including magnetic susceptibility (MS), CaCO3 content, and stable isotopes (δ18O and δ13C), from the stratigraphic interval covering the uppermost Maastrichtian and the lower Danian, represented by the pelagic limestones of the Scaglia Rossa Formation continuously exposed in the classic sections of the Bottaccione Gorge and the Contessa Highway near Gubbio, Italy. Variations in all the proxy series are periodic and reflect astronomically forced climate changes (i.e. Milankovitch cycles). In particular, the MS proxy reflects variations in the terrigenous dust input in this pelagic, deep-marine environment. We speculate that the dust is mainly eolian in origin and that the availability and transport of dust are influenced by variations in the vegetation cover on the Maastrichtian-Paleocene African or Asian zone, which were respectively located at tropical to subtropical latitudes to the south or far to the east of the western Tethyan Umbria-Marche Basin, and were characterized by monsoonal circulation. The dynamics of monsoonal circulation are known to be strongly dependent on precession-driven and obliquity- driven changes in insolation. We propose that a threshold mechanism in the vegetation coverage may explain eccentricity-related periodicities in the terrigenous eolian dust input. Other mechanisms, both oceanic and terrestrial, that depend on the precession amplitude modulated by eccentricity, can be evoked together with the variation of dust influx in the western Tethys to explain the detected eccentricity periodicity in the δ13C record. Our interpretations of the δ18O and MS records suggest a warming event ∼400 k.y. prior to the Cretaceous-Paleogene (K-Pg) boundary, and a period of climatic and environmental instability in the earliest Danian. Based on these multiproxy phase relationships, we propose an astronomical tuning for these sections; this leads us to an estimate of the timing and duration of several late Maastrichtian and Danian biostratigraphic and magnetostratigraphic events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2640345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact