The Contessa Valley and the Bottaccione Gorge located close to Gubbio (central Italy) include some of the most complete successions of Paleogene sediments known from the Tethyan realm. Owing to the continuous deposition in a pelagic setting, a rather modest tectonic overprint, and the availability of excellent age control through magnetostratigraphy, biostratigraphy, chronostratigraphy, and tephrostratigraphy, and direct radioisotopic dates from interbedded volcaniclastic layers, these sediments have played a prominent role in the establishment of standard Paleogene time scales. We present here a complete and well-preserved Paleogene pelagic composite succession of the Gubbio area that provides the means for a more accurate and precise calibration of the Paleogene time scale. As a necessary step toward the compilation of a more robust database on a wide scale so to improve the magnetostratigraphic, biostratigraphic, and chronostratigraphic framework of the classical Tethyan zonations, enabling regional and supraregional correlations, we have constructed a record of reliable Paleogene planktonic foraminifera, calcareous nannofossil, and dinocyst biohorizons commonly used in tropical to subtropical Cenozoic zonations. In addition, an age model is provided for the Paleogene pelagic composite succession based on magnetostratigraphy, planktonic foraminifera, calcareous nannofossils, and dinocysts that contributes to an integrated chronology for the Paleogene Tethyan sediments from 66 to 23 Ma.

Integrated magnetostratigraphy, biostratigraphy, and chronostratigraphy of the Paleogene pelagic succession at Gubbio (central Italy)

COCCIONI, RODOLFO;FRONTALINI, FABRIZIO;SIDERI, MARIANNA
2016

Abstract

The Contessa Valley and the Bottaccione Gorge located close to Gubbio (central Italy) include some of the most complete successions of Paleogene sediments known from the Tethyan realm. Owing to the continuous deposition in a pelagic setting, a rather modest tectonic overprint, and the availability of excellent age control through magnetostratigraphy, biostratigraphy, chronostratigraphy, and tephrostratigraphy, and direct radioisotopic dates from interbedded volcaniclastic layers, these sediments have played a prominent role in the establishment of standard Paleogene time scales. We present here a complete and well-preserved Paleogene pelagic composite succession of the Gubbio area that provides the means for a more accurate and precise calibration of the Paleogene time scale. As a necessary step toward the compilation of a more robust database on a wide scale so to improve the magnetostratigraphic, biostratigraphic, and chronostratigraphic framework of the classical Tethyan zonations, enabling regional and supraregional correlations, we have constructed a record of reliable Paleogene planktonic foraminifera, calcareous nannofossil, and dinocyst biohorizons commonly used in tropical to subtropical Cenozoic zonations. In addition, an age model is provided for the Paleogene pelagic composite succession based on magnetostratigraphy, planktonic foraminifera, calcareous nannofossils, and dinocysts that contributes to an integrated chronology for the Paleogene Tethyan sediments from 66 to 23 Ma.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2640346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact