We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.

On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion

KOGOJ, ALESSIA ELISABETTA
Writing – Review & Editing
2017

Abstract

We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.
File in questo prodotto:
File Dimensione Formato  
cone_criterion.pdf

solo utenti autorizzati

Descrizione: versione editoriale
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 317.07 kB
Formato Adobe PDF
317.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
criterio_cono_arXiv.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Versione pre-print
Licenza: Creative commons
Dimensione 230.48 kB
Formato Adobe PDF
230.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2642963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact