We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.
On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion
KOGOJ, ALESSIA ELISABETTA
Writing – Review & Editing
2017
Abstract
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cone_criterion.pdf
solo utenti autorizzati
Descrizione: versione editoriale
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
317.07 kB
Formato
Adobe PDF
|
317.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
criterio_cono_arXiv.pdf
accesso aperto
Descrizione: versione preprint
Tipologia:
Versione pre-print
Licenza:
Creative commons
Dimensione
230.48 kB
Formato
Adobe PDF
|
230.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.