While occurrences of wavelike motion in the stable boundary layer due to the presence of a significant restoring buoyancy force are rarely disputed, their modalities and interaction with turbulence remain a subject of active research. In this work, the characteristics of gravity waves and their impact on flow statistics, including turbulent fluxes, are presented using data collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of gravity waves because of persistent conditions of strong atmospheric stability in the lower troposphere. Periods dominated by wavelike motion have been identified by analysing time series measured by fast response instrumentation. The nature and characteristic of the dominant wavy motions are investigated using Fourier cross-spectral indicators. Moreover, a multi-resolution decomposition has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities including turbulent flux calculations.

Characteristics of Gravity Waves over an Antarctic Ice Sheet during an Austral Summer

GIOSTRA, UMBERTO;
2015

Abstract

While occurrences of wavelike motion in the stable boundary layer due to the presence of a significant restoring buoyancy force are rarely disputed, their modalities and interaction with turbulence remain a subject of active research. In this work, the characteristics of gravity waves and their impact on flow statistics, including turbulent fluxes, are presented using data collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of gravity waves because of persistent conditions of strong atmospheric stability in the lower troposphere. Periods dominated by wavelike motion have been identified by analysing time series measured by fast response instrumentation. The nature and characteristic of the dominant wavy motions are investigated using Fourier cross-spectral indicators. Moreover, a multi-resolution decomposition has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities including turbulent flux calculations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2643480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact