During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc^−3 yr^−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.

Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

BRANCHESI, MARICA;CERBONI BAIARDI, LORENZO;GRECO, GIUSEPPE;GUIDI, GIANLUCA MARIA;HARMS, JAN;MARTELLI, FILIPPO;MONTANI, MATTEO;PIERGIOVANNI, FRANCESCO;STRATTA, MARIA GIULIANA;VETRANO, FLAVIO;VICERE', ANDREA;
2017

Abstract

During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc^−3 yr^−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
File in questo prodotto:
File Dimensione Formato  
Search_IMBH_O1_ArX.pdf

accesso aperto

Tipologia: Versione pre-print
Licenza: Creative commons
Dimensione 836.5 kB
Formato Adobe PDF
836.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2647713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 72
social impact