The increasing production and use of nanoparticles (NPs) will lead to their release into the aquatic environment, posing a potential threat to the health of aquatic organisms. Both in the water phase and in the sediments NPs could mix and interact with other pollutants, such as organic xenobiotics and heavy metals, leading to possible changes in their bioavailability/bioconcentration/toxicity. However, whether these interactive effects may lead to increased harmful effects in marine organisms is largely unknown. In this work, available data mainly obtained on carbon based NPs and n-TiO2, as examples of widespread NPs, in aquatic organisms are reviewed. Moreover, data are summarized on the interactive effects of n-TiO2 with 2,3,7,8-TCDD and Cd(2+), chosen as examples of common and persistent organic and inorganic contaminants, respectively, in the model marine bivalve Mytilus. The results reveal complex and often unexpected interactive responses of NPs with other pollutants, depending on type of contaminant and the endpoint measured, as well as differences in bioaccumulation. The results are discussed in relation with data obtained in freshwater organisms. Overall, information available so far indicate that interactive effects of NPs with other contaminants do not necessarily lead to increased toxicity or harmful effects in aquatic organisms.

Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe?

Canesi, L;Ciacci, C;
2015

Abstract

The increasing production and use of nanoparticles (NPs) will lead to their release into the aquatic environment, posing a potential threat to the health of aquatic organisms. Both in the water phase and in the sediments NPs could mix and interact with other pollutants, such as organic xenobiotics and heavy metals, leading to possible changes in their bioavailability/bioconcentration/toxicity. However, whether these interactive effects may lead to increased harmful effects in marine organisms is largely unknown. In this work, available data mainly obtained on carbon based NPs and n-TiO2, as examples of widespread NPs, in aquatic organisms are reviewed. Moreover, data are summarized on the interactive effects of n-TiO2 with 2,3,7,8-TCDD and Cd(2+), chosen as examples of common and persistent organic and inorganic contaminants, respectively, in the model marine bivalve Mytilus. The results reveal complex and often unexpected interactive responses of NPs with other pollutants, depending on type of contaminant and the endpoint measured, as well as differences in bioaccumulation. The results are discussed in relation with data obtained in freshwater organisms. Overall, information available so far indicate that interactive effects of NPs with other contaminants do not necessarily lead to increased toxicity or harmful effects in aquatic organisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2656629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact