The thermal behavior of a woolly erionite-K sample (Lander County, NV, USA), chemical formula (Ca2.03Na0.73K2.52Mg0.26)[Al8.22Si27.78O71.80]35.94H2O, was investigated in the 303–1173 K thermal range by in situ X-ray powder diffraction. Present data suggest a general thermally-induced volume contraction whose magnitude increases as Si Si+Al ratio becomes smaller. An inverse correlation between Si Si+Al ratio and Tdehydr is observed ecause higher Si Si+Al ratio values are associated to lower dehydration temperatures. A positive dependence exists between Si Si+Al ratio and Tbreak. A higher Si content results in a greater thermal stability, in agreement with the general trend observed in zeolites. On the contrary, no correlation has been found between Tbreak and weighted ionic potential (Z/r)wt as suggested by reference data. Heating produces a general depletion of the Ca1, Ca2, Ca3, and K1 sites, which is counterbalanced by an increase of the K2 site scattering, even though the latter is not populated at RT. No “internal ion exchange” mechanism was apparently acting in the present sample differently from other erionite samples analysed in the past. At 303 K approximately 20 e allocated at the OW H2O sites might be assigned to (extra-framework) EF cations. Such fraction increases due to their migration from the extra-framework cation sites following the same mechanism reported in reference data.

Thermal Stability of Woolly Erionite-K and Considerations about the Heat-Induced Behaviour of the Erionite Group

Giordani, Matteo;Mattioli, Michele
2018

Abstract

The thermal behavior of a woolly erionite-K sample (Lander County, NV, USA), chemical formula (Ca2.03Na0.73K2.52Mg0.26)[Al8.22Si27.78O71.80]35.94H2O, was investigated in the 303–1173 K thermal range by in situ X-ray powder diffraction. Present data suggest a general thermally-induced volume contraction whose magnitude increases as Si Si+Al ratio becomes smaller. An inverse correlation between Si Si+Al ratio and Tdehydr is observed ecause higher Si Si+Al ratio values are associated to lower dehydration temperatures. A positive dependence exists between Si Si+Al ratio and Tbreak. A higher Si content results in a greater thermal stability, in agreement with the general trend observed in zeolites. On the contrary, no correlation has been found between Tbreak and weighted ionic potential (Z/r)wt as suggested by reference data. Heating produces a general depletion of the Ca1, Ca2, Ca3, and K1 sites, which is counterbalanced by an increase of the K2 site scattering, even though the latter is not populated at RT. No “internal ion exchange” mechanism was apparently acting in the present sample differently from other erionite samples analysed in the past. At 303 K approximately 20 e allocated at the OW H2O sites might be assigned to (extra-framework) EF cations. Such fraction increases due to their migration from the extra-framework cation sites following the same mechanism reported in reference data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2656895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact