We investigate the dynamics of a family of one-dimensional linear power maps. This family has been studied by many authors mainly in the continuous case, associated with Nordmark systems. In the discontinuous case, which is much less studied, the map has vertical and horizontal asymptotes giving rise to new kinds of border collision bifurcations. We explain a mechanism of the interplay between smooth bifurcations and border collision bifurcations with singularity, leading to peculiar sequences of attracting cycles of periods n, 2n, 4n-1, 2(4n-1),..., n >= 3. We show also that the transition from invertible to noninvertible map may lead abruptly to chaos, and the role of organizing center in the parameter space is played by a particular bifurcation point related to this transition and to a flip bifurcation. Robust unbounded chaotic attractors characteristic for certain parameter ranges are also described. We provide proofs of some properties of the considered map. However, the complete description of its rich bifurcation structure is still an open problem.

Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps

Laura Gardini;Iryna Sushko
2018

Abstract

We investigate the dynamics of a family of one-dimensional linear power maps. This family has been studied by many authors mainly in the continuous case, associated with Nordmark systems. In the discontinuous case, which is much less studied, the map has vertical and horizontal asymptotes giving rise to new kinds of border collision bifurcations. We explain a mechanism of the interplay between smooth bifurcations and border collision bifurcations with singularity, leading to peculiar sequences of attracting cycles of periods n, 2n, 4n-1, 2(4n-1),..., n >= 3. We show also that the transition from invertible to noninvertible map may lead abruptly to chaos, and the role of organizing center in the parameter space is played by a particular bifurcation point related to this transition and to a flip bifurcation. Robust unbounded chaotic attractors characteristic for certain parameter ranges are also described. We provide proofs of some properties of the considered map. However, the complete description of its rich bifurcation structure is still an open problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2661754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact