This work is devoted to the study of the existence of solutions to nonlocal equations involving the fractional Laplacian. These equations have a variational structure and we find a nontrivial solution for them using the Mountain Pass Theorem. To make the nonlinear methods work, some careful analysis of the fractional spaces involved is necessary. In addition, we require rather general assumptions on the local operator. As far as we know, this result is new and represent a fractional version of a classical theorem obtained working with Laplacian equations.
On doubly nonlocal fractional elliptic equations
Molica Bisci G
;
2015
Abstract
This work is devoted to the study of the existence of solutions to nonlocal equations involving the fractional Laplacian. These equations have a variational structure and we find a nontrivial solution for them using the Mountain Pass Theorem. To make the nonlinear methods work, some careful analysis of the fractional spaces involved is necessary. In addition, we require rather general assumptions on the local operator. As far as we know, this result is new and represent a fractional version of a classical theorem obtained working with Laplacian equations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.