We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO's second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h rss) from incoming intermediate-duration gravitational waves ranging from 1.1 × 10−22 at 150 Hz to 4.4 × 10−22 at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806–20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 × 1044 erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO's sixth science run. The short-duration search yielded upper limits of 2.1 × 1044 erg for short white noise bursts, and 2.3 × 1047 erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.

Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run

Brighenti, F.;Greco, G.;Guidi, G.;Martelli, F.;Montani, M.;Piergiovanni, F.;Stratta, G.;Vetrano, F.;Viceré, A.;
2019

Abstract

We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO's second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h rss) from incoming intermediate-duration gravitational waves ranging from 1.1 × 10−22 at 150 Hz to 4.4 × 10−22 at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806–20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 × 1044 erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO's sixth science run. The short-duration search yielded upper limits of 2.1 × 1044 erg for short white noise bursts, and 2.3 × 1047 erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2667629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact