The synthesis and the structural characterization of a cyclic hexapeptoid with four methoxyethyl and two propargyl side chains have disclosed the presence of a hydrate crystal form [form (I)] and an anhydrous crystal form [form (II)]. The relative amounts of form (I) and form (II) in the as-purified product were determined by Rietveld refinement and depend on the purification procedures. In crystal form (I), peptoid molecules assemble in a columnar arrangement by means of side-chain-to-backbone C CH OC hydrogen bonds. In the anhydrous crystal form (II), cyclopeptoid molecules form ribbons by means of backbone-to-backbone CH2 OC hydrogen bonds, thus mimicking -sheet secondary structures in proteins. In both crystal forms side chains act as joints among the columns or the ribbons and contribute to the stability of the whole solid-state assembly. Water molecules in the hydrate crystal form (I) bridge columns of cyclic peptoid molecules, providing a more efficient packing.

Synthesis, crystallization, X-ray structural characterization and solid-state assembly of a cyclic hexapeptoid with propargyl and methoxyethyl side chains

MACEDI, ELEONORA;
2017

Abstract

The synthesis and the structural characterization of a cyclic hexapeptoid with four methoxyethyl and two propargyl side chains have disclosed the presence of a hydrate crystal form [form (I)] and an anhydrous crystal form [form (II)]. The relative amounts of form (I) and form (II) in the as-purified product were determined by Rietveld refinement and depend on the purification procedures. In crystal form (I), peptoid molecules assemble in a columnar arrangement by means of side-chain-to-backbone C CH OC hydrogen bonds. In the anhydrous crystal form (II), cyclopeptoid molecules form ribbons by means of backbone-to-backbone CH2 OC hydrogen bonds, thus mimicking -sheet secondary structures in proteins. In both crystal forms side chains act as joints among the columns or the ribbons and contribute to the stability of the whole solid-state assembly. Water molecules in the hydrate crystal form (I) bridge columns of cyclic peptoid molecules, providing a more efficient packing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2670844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact