The role of high-energy particles in limiting the performance of on-board instruments was studied for the European Space Agency (ESA) Laser Interferometer Space Antenna (LISA) Pathfinder (LPF) and ESA/National Astronautics and Space Administration Solar Orbiter missions. Particle detectors (PD) placed on board the LPF spacecraft allowed for testing the reliability of pre-launch predictions of galactic cosmic-ray (GCR) energy spectra and for studying the modulation of proton and helium overall flux above 70 MeV n −1 on a day-by-day basis. GCR flux variations up to approximately 15% in less than a month were observed with LPF orbiting around the Lagrange point L1 between 2016 and 2017. These variations appeared barely detected or undetected in neutron monitors. In this work the LPF data and contemporaneous observations carried out with the magnetic spectrometer AMS-02 experiment are considered to show the effects of GCR flux short-term variations with respect to monthly averaged measurements. Moreover, it is shown that subsequent large-scale interplanetary structures cause a continuous modulation of GCR fluxes. As a result, small Forbush decreases cannot be considered good proxies for the transit of interplanetary coronal mass ejections and for geomagnetic storm forecasting.

Study of Galactic Cosmic-Ray Flux Modulation by Interplanetary Plasma Structures for the Evaluation of Space Instrument Performance and Space Weather Science Investigations

Catia Grimani
Conceptualization
;
Simone Benella
Membro del Collaboration Group
;
Michele Fabi
Software
;
Mattia Villani
Membro del Collaboration Group
2019

Abstract

The role of high-energy particles in limiting the performance of on-board instruments was studied for the European Space Agency (ESA) Laser Interferometer Space Antenna (LISA) Pathfinder (LPF) and ESA/National Astronautics and Space Administration Solar Orbiter missions. Particle detectors (PD) placed on board the LPF spacecraft allowed for testing the reliability of pre-launch predictions of galactic cosmic-ray (GCR) energy spectra and for studying the modulation of proton and helium overall flux above 70 MeV n −1 on a day-by-day basis. GCR flux variations up to approximately 15% in less than a month were observed with LPF orbiting around the Lagrange point L1 between 2016 and 2017. These variations appeared barely detected or undetected in neutron monitors. In this work the LPF data and contemporaneous observations carried out with the magnetic spectrometer AMS-02 experiment are considered to show the effects of GCR flux short-term variations with respect to monthly averaged measurements. Moreover, it is shown that subsequent large-scale interplanetary structures cause a continuous modulation of GCR fluxes. As a result, small Forbush decreases cannot be considered good proxies for the transit of interplanetary coronal mass ejections and for geomagnetic storm forecasting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2674289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact