Two maltol-based ligands, N,N'-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N',N'-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA.
Playing with Structural Parameters: Synthesis and Characterization of Two New Maltol-Based Ligands with Binding and Antineoplastic Properties
Macedi, Eleonora;Paderni, Daniele;Formica, Mauro;Fanelli, Mirco;Giorgi, Luca;Amatori, Stefano;Ambrosi, Gianluca;Fusi, Vieri
2020
Abstract
Two maltol-based ligands, N,N'-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N',N'-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.