On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from 1.12 to 2.52 Mo (1.46–1.87 Mo if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass 1.44+0.02-0.02 M and the total mass 3.4+0.3M-0.1 of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250–2810 Gpc^-3 yr^-1 .
GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙
Bischi, M.;Brighenti, F.;Greco, G.;Guidi, G. M.;Martelli, F.;Montani, M.;Piergiovanni, F.;Vetrano, F.;Vicere', A.;
2020
Abstract
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from 1.12 to 2.52 Mo (1.46–1.87 Mo if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass 1.44+0.02-0.02 M and the total mass 3.4+0.3M-0.1 of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250–2810 Gpc^-3 yr^-1 .File | Dimensione | Formato | |
---|---|---|---|
GW190425_Abbott_2020_ApJL_892_L3.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
8.11 MB
Formato
Adobe PDF
|
8.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.