The synthesis, photochemical properties, biological effects and the X-ray crystal structure of a fluorescent polyamine macrocycle L are reported. L is a polyamine cyclophane macrocycle in which 2,6-bis(5-(2-methylphenyl)-1,3,4-oxadiazol-2-yl)pyridine (POXAPy) acts as a fluorescent sensor and the polyamine as a metal ion binding unit. L performs as a PET-mediated chemosensor, with a maximum emission wavelength close to 360 nm. This gives rise to a signal that is visible to the naked eye in the blue visible range. L is able to detect the Zn(ii) and Cd(ii) metal ions in an aqueous solution at pH = 7, with the coordination of the ions switching the emission ON through a CHEF effect. In contrast, paramagnetic metal ions like Cu(ii) and Ni(ii) completely quench the already low emission of L at this pH value. L affects the cell survival of a leukemic cellular model (U937) at micromolar concentrations with cell death starting after only 24 h of exposure; starting from a final concentration of 5 μM, L almost completely abrogates the survival of the leukemic cells over 72 h, with a mechanism that is compatible with a genomic DNA interaction.

Zn(ii) detection and biological activity of a macrocycle containing a bis(oxadiazole)pyridine derivative as fluorophore

Ambrosi, Gianluca;Fanelli, Mirco;Formica, Mauro;Paderni, Daniele;Micheloni, Mauro;Giorgi, Luca
;
Fusi, Vieri
2020

Abstract

The synthesis, photochemical properties, biological effects and the X-ray crystal structure of a fluorescent polyamine macrocycle L are reported. L is a polyamine cyclophane macrocycle in which 2,6-bis(5-(2-methylphenyl)-1,3,4-oxadiazol-2-yl)pyridine (POXAPy) acts as a fluorescent sensor and the polyamine as a metal ion binding unit. L performs as a PET-mediated chemosensor, with a maximum emission wavelength close to 360 nm. This gives rise to a signal that is visible to the naked eye in the blue visible range. L is able to detect the Zn(ii) and Cd(ii) metal ions in an aqueous solution at pH = 7, with the coordination of the ions switching the emission ON through a CHEF effect. In contrast, paramagnetic metal ions like Cu(ii) and Ni(ii) completely quench the already low emission of L at this pH value. L affects the cell survival of a leukemic cellular model (U937) at micromolar concentrations with cell death starting after only 24 h of exposure; starting from a final concentration of 5 μM, L almost completely abrogates the survival of the leukemic cells over 72 h, with a mechanism that is compatible with a genomic DNA interaction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2678144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact