Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.

Reversing Place Transition Nets

Claudio Antares Mezzina
;
2020

Abstract

Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.
File in questo prodotto:
File Dimensione Formato  
lmcs_petrinet.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 516.8 kB
Formato Adobe PDF
516.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2687893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact