Cigarette butts are known to contain toxic metals which pose a potential threat to the environment and human health. The seriousness of this threat is largely determined by the leachability of these toxic metals when the butts are exposed to aqueous solutions in the environment. The aims of this study were to determine the presence and mobility of toxic and non-toxic elements found in discarded cigarette butts; to relate this mobility to two different contact situations with leaching liquids: tumbling and trampling (batch test) and percolation in a static position (column test); and finally, to verify possible variations in solubility by simulating different environmental systems. Five leachants with different pH values were used to simulate various environmental conditions The concentrations of the solubilized metals were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS). CH3COOH pH 2.5 showed the greatest capacity to dissolve many elements. On the contrary, weakly acidic or alkaline environments did not favor the leachability of the elements. The best extraction capacity of the column with respect to the batch is statistically significant (p <0.05) for the elements Al, Fe, Ni and Zn, while the batch for P, Si, S. Pb, Cd, As were not detectable in cigarette butts, while Hg had an average concentration of 0.0502 μg/g. However, Hg was < LOD in all different leachants.

Assessment of the release of metals from cigarette butts into the environment

Roselli, Carla;Desideri, Donatella;Sisti, Davide;Meli, Maria Assunta
2021

Abstract

Cigarette butts are known to contain toxic metals which pose a potential threat to the environment and human health. The seriousness of this threat is largely determined by the leachability of these toxic metals when the butts are exposed to aqueous solutions in the environment. The aims of this study were to determine the presence and mobility of toxic and non-toxic elements found in discarded cigarette butts; to relate this mobility to two different contact situations with leaching liquids: tumbling and trampling (batch test) and percolation in a static position (column test); and finally, to verify possible variations in solubility by simulating different environmental systems. Five leachants with different pH values were used to simulate various environmental conditions The concentrations of the solubilized metals were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS). CH3COOH pH 2.5 showed the greatest capacity to dissolve many elements. On the contrary, weakly acidic or alkaline environments did not favor the leachability of the elements. The best extraction capacity of the column with respect to the batch is statistically significant (p <0.05) for the elements Al, Fe, Ni and Zn, while the batch for P, Si, S. Pb, Cd, As were not detectable in cigarette butts, while Hg had an average concentration of 0.0502 μg/g. However, Hg was < LOD in all different leachants.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2692272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact