In the Adriatic Sea, massive rainfall events are causing flooding of rivers and streams, with severe consequences on the environment. The consequent bacterial contamination of bathing water poses public health risks besides damaging tourism and the economy. This study was conducted in the framework of WATERCARE, an EU Interreg Italy-Croatia Project, which aims at reducing the impact of microbial contamination on Adriatic bathing water due to heavy rainfall events drained in the local sewage network and; enhancing the quality of local waters; and providing support for the decision-making processes regarding the management of bathing water in line with EU regulations. The study involved the development of an innovative water quality integrated system that helps meet these objectives. It consists of four components: a real time hydro-meteorological monitoring system; an autosampler to collect freshwater samples during and after significant rainfall events; a forecast system to simulate the dispersion of pollutants in seawater; and a real-time alert system that can predict the potential ecological risk from the microbial contamination of seawater. The system was developed and tested at a pilot site (Fano, Italy). These preliminary results will be used to develop guidelines for urban wastewater and coastal system quality assessments to contribute to develop policy actions and final governance decisions.
Water quality integrated system: a strategic approach to improve bathing water management
Capellacci S.Formal Analysis
;Casabianca S.Formal Analysis
;Penna A.Writing – Original Draft Preparation
;Ricci F.Formal Analysis
;
2021
Abstract
In the Adriatic Sea, massive rainfall events are causing flooding of rivers and streams, with severe consequences on the environment. The consequent bacterial contamination of bathing water poses public health risks besides damaging tourism and the economy. This study was conducted in the framework of WATERCARE, an EU Interreg Italy-Croatia Project, which aims at reducing the impact of microbial contamination on Adriatic bathing water due to heavy rainfall events drained in the local sewage network and; enhancing the quality of local waters; and providing support for the decision-making processes regarding the management of bathing water in line with EU regulations. The study involved the development of an innovative water quality integrated system that helps meet these objectives. It consists of four components: a real time hydro-meteorological monitoring system; an autosampler to collect freshwater samples during and after significant rainfall events; a forecast system to simulate the dispersion of pollutants in seawater; and a real-time alert system that can predict the potential ecological risk from the microbial contamination of seawater. The system was developed and tested at a pilot site (Fano, Italy). These preliminary results will be used to develop guidelines for urban wastewater and coastal system quality assessments to contribute to develop policy actions and final governance decisions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.