: Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a heterocomplex composed of the EPO receptor and CD131, the beta common receptor. In the present work, we have delimited tissue-protective domains within EPO to short peptide sequences. We demonstrate that helix B (amino acid residues 58-82) of EPO, which faces the aqueous medium when EPO is bound to the receptor homodimer, is both neuroprotective in vitro and tissue protective in vivo in a variety of models, including ischemic stroke, diabetes-induced retinal edema, and peripheral nerve trauma. Remarkably, an 11-aa peptide composed of adjacent amino acids forming the aqueous face of helix B is also tissue protective, as confirmed by its therapeutic benefit in models of ischemic stroke and renal ischemia-reperfusion. Further, this peptide simulating the aqueous surface of helix B also exhibits EPO's trophic effects by accelerating wound healing and augmenting cognitive function in rodents. As anticipated, neither helix B nor the 11-aa peptide is erythropoietic in vitro or in vivo. Thus, the tissue-protective activities of EPO are mimicked by small, nonerythropoietic peptides that simulate a portion of EPO's three-dimensional structure.

Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin

Ghezzi, Pietro
Conceptualization
;
2008

Abstract

: Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a heterocomplex composed of the EPO receptor and CD131, the beta common receptor. In the present work, we have delimited tissue-protective domains within EPO to short peptide sequences. We demonstrate that helix B (amino acid residues 58-82) of EPO, which faces the aqueous medium when EPO is bound to the receptor homodimer, is both neuroprotective in vitro and tissue protective in vivo in a variety of models, including ischemic stroke, diabetes-induced retinal edema, and peripheral nerve trauma. Remarkably, an 11-aa peptide composed of adjacent amino acids forming the aqueous face of helix B is also tissue protective, as confirmed by its therapeutic benefit in models of ischemic stroke and renal ischemia-reperfusion. Further, this peptide simulating the aqueous surface of helix B also exhibits EPO's trophic effects by accelerating wound healing and augmenting cognitive function in rodents. As anticipated, neither helix B nor the 11-aa peptide is erythropoietic in vitro or in vivo. Thus, the tissue-protective activities of EPO are mimicked by small, nonerythropoietic peptides that simulate a portion of EPO's three-dimensional structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2696321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 270
  • ???jsp.display-item.citation.isi??? 242
social impact