Developing targeted drug delivery systems is an urgent need to decrease the side effects and increase the drug's efficiency. Most cancer cells show an increased sugar consumption compared to healthy cells due to the deregulation of sugar transporters. Consequently, liposomes, as a biocompatible nanocarrier, could be surface decorated by sugars to enhance drug targeting into cancer cells. Our work outlines a new strategy to easily manufacture sucrose decorated liposomes using sucrose stearate, a biocompatible and biodegradable non-ionic surfactant, with a scalable microfluidic approach. Sucrose decorated liposomes were loaded with berberine hydrochloride, a well-known phytochemical compound to investigate its effects on triple-negative breast cancer cells (MDA-MB-231). Using the microfluidic manufacturing system, we prepared berberine-loaded liposomes using a mixture of phosphatidylcholine and cholesterol with and without sucrose stearate with a size up to 140 nm and narrow polydispersity. Stability was confirmed for 90 days, and the in vitro release profile was evaluated. The formulations showed acceptable in vitro biocompatibility and significantly higher anti-proliferative effect on MDA-MB-231 cell line. These results have been confirmed by an increased uptake evaluated by flow cytometry and confocal microscopy. Taken together, our findings represent an innovative, easy, and scalable approach to obtain sugar decorated liposomal formulations without any surface-chemistry reactions. They can be potentially used as an anticancer targeted drug delivery system.

A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells

Khorshid, Shiva;Montanari, Mariele;Benedetti, Serena;Moroni, Sofia;Aluigi, Annalisa;Canonico, Barbara;Papa, Stefano;Tiboni, Mattia
;
Casettari, Luca
2022

Abstract

Developing targeted drug delivery systems is an urgent need to decrease the side effects and increase the drug's efficiency. Most cancer cells show an increased sugar consumption compared to healthy cells due to the deregulation of sugar transporters. Consequently, liposomes, as a biocompatible nanocarrier, could be surface decorated by sugars to enhance drug targeting into cancer cells. Our work outlines a new strategy to easily manufacture sucrose decorated liposomes using sucrose stearate, a biocompatible and biodegradable non-ionic surfactant, with a scalable microfluidic approach. Sucrose decorated liposomes were loaded with berberine hydrochloride, a well-known phytochemical compound to investigate its effects on triple-negative breast cancer cells (MDA-MB-231). Using the microfluidic manufacturing system, we prepared berberine-loaded liposomes using a mixture of phosphatidylcholine and cholesterol with and without sucrose stearate with a size up to 140 nm and narrow polydispersity. Stability was confirmed for 90 days, and the in vitro release profile was evaluated. The formulations showed acceptable in vitro biocompatibility and significantly higher anti-proliferative effect on MDA-MB-231 cell line. These results have been confirmed by an increased uptake evaluated by flow cytometry and confocal microscopy. Taken together, our findings represent an innovative, easy, and scalable approach to obtain sugar decorated liposomal formulations without any surface-chemistry reactions. They can be potentially used as an anticancer targeted drug delivery system.
File in questo prodotto:
File Dimensione Formato  
File finale 50 day free.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 7.55 MB
Formato Adobe PDF
7.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript first submission.pdf

accesso aperto

Tipologia: Versione pre-print
Licenza: Creative commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2703010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact