We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detector frequency band [10,2000] Hz have been used. No significant detection was found and 95% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10−26 at ≃ 142 Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass–boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.
Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data
Amato, A.;Assiduo, M.;Aubin, F.;Bischi, M.;Fabrizi, F.;Faedi, F.;Guidi, G.;Martelli, F.;Montani, M.;Piergiovanni, F.;Vetrano, F.;Viceré, A.;
2022
Abstract
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detector frequency band [10,2000] Hz have been used. No significant detection was found and 95% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10−26 at ≃ 142 Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass–boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.