RYR1 is the gene encoding the ryanodine receptor 1, a calcium release channel of the endo/sarcoplasmic reticulum. I4898T in RYR1 is one of the most common mutations that give rise to central core disease (CCD), with a variable phenotype ranging from mild to severe myopathy to lethal early-onset core-rod myopathy. Mice with the corresponding I4895T mutation in Ryr1 present mild myopathy when the mutation is heterozygous while I4895T homozygous is perinatal-lethal. Here we show that skeletal muscles of I4895T homozygous mice at birth present signs of stress of the endoplasmic reticulum (ER stress) and of the related unfolded protein response (UPR) with increased levels of the maladaptive mediators CHOP and ERO1. To gain information on the role of CHOP in the pathogenesis of RYR1I4895T-related myopathy, we generated compound Ryr1I4895T, Chop knock-out (-/-) mice. However, the genetic deletion of Chop, although it attenuates ER stress in the skeletal muscle of the newborns, does not rescue any phenotypic or functional features of Ryr1I4895T in mice: neither the perinatal-lethal phenotype nor the inability of Ryr1I4895T to respond to its agonist caffeine, but protects from ER stress-induced apoptosis. These findings suggest that genetic deletion of the ER stress response mediator CHOP is not sufficient to counteract the pathological Ryr1I4895T phenotype.

Loss-of-rescue of Ryr1I4895T-related pathology by the genetic inhibition of the ER stress response mediator CHOP

Guidarelli, Andrea;Cantoni, Orazio;Zito, Ester
Resources
2022

Abstract

RYR1 is the gene encoding the ryanodine receptor 1, a calcium release channel of the endo/sarcoplasmic reticulum. I4898T in RYR1 is one of the most common mutations that give rise to central core disease (CCD), with a variable phenotype ranging from mild to severe myopathy to lethal early-onset core-rod myopathy. Mice with the corresponding I4895T mutation in Ryr1 present mild myopathy when the mutation is heterozygous while I4895T homozygous is perinatal-lethal. Here we show that skeletal muscles of I4895T homozygous mice at birth present signs of stress of the endoplasmic reticulum (ER stress) and of the related unfolded protein response (UPR) with increased levels of the maladaptive mediators CHOP and ERO1. To gain information on the role of CHOP in the pathogenesis of RYR1I4895T-related myopathy, we generated compound Ryr1I4895T, Chop knock-out (-/-) mice. However, the genetic deletion of Chop, although it attenuates ER stress in the skeletal muscle of the newborns, does not rescue any phenotypic or functional features of Ryr1I4895T in mice: neither the perinatal-lethal phenotype nor the inability of Ryr1I4895T to respond to its agonist caffeine, but protects from ER stress-induced apoptosis. These findings suggest that genetic deletion of the ER stress response mediator CHOP is not sufficient to counteract the pathological Ryr1I4895T phenotype.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2707291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact