A dietary supplement potentially employed for the treatment and/or prevention of hyperlipidemia was developed. The proposed product is composed of a combination of natural macromolecules as chitosan (CH), α-cyclodextrin (α-CD), and lupin proteins (LP). First, the anti-hyperlipidemic effect of the α-CD and LP binary mixture was assessed and compared to that of the extensively utilized anti-hyperlipidemic CH, using a hyperlipidemic rat model. The anti-hyperlipidemic effect of their combination was also demonstrated. Additionally, ligand–target and protein–protein docking studies were performed. The in vivo results displayed that on intergroup comparison, blending CH, α-CD, and LP promised a superior therapeutic effect over α-CD and LP mixture, CH, and the marketed atorvastatin, potentiating a considerable reduction of serum lipid profile and the calculated atherogenic risk predictor indices. Molecular docking study revealed a weak hydrophobic cholesterol–CH and cholesterol–α-CD interactions, while protein–protein docking study showed a good lipase–LP interaction, involving eight hydrogen bonds. Then, on the base of the in vivo and docking study results, a tablet formulation was produced aimed to overcome the negative technological effects of the anti-hyperlipidemic macromolecules: long disintegration time and tablets mechanical resistance. The optimized tablet formulation has a disintegration time shorter than 15 min and a weight loss from friability test lower than 1%, which are in line with the regulatory specifications for uncoated tablets. Overall, this anti-hyperlipidemic formulation is attractive for the dietary and nutraceutical market, despite further clinical studies are required to assess the efficacy, possible side effects, and product compliance.

Hyperlipidemia control using the innovative association of lupin proteins and chitosan and α-cyclodextrin dietary fibers: food supplement formulation, molecular docking study, and in vivo evaluation

Tiboni, Mattia;Casettari, Luca;
2022

Abstract

A dietary supplement potentially employed for the treatment and/or prevention of hyperlipidemia was developed. The proposed product is composed of a combination of natural macromolecules as chitosan (CH), α-cyclodextrin (α-CD), and lupin proteins (LP). First, the anti-hyperlipidemic effect of the α-CD and LP binary mixture was assessed and compared to that of the extensively utilized anti-hyperlipidemic CH, using a hyperlipidemic rat model. The anti-hyperlipidemic effect of their combination was also demonstrated. Additionally, ligand–target and protein–protein docking studies were performed. The in vivo results displayed that on intergroup comparison, blending CH, α-CD, and LP promised a superior therapeutic effect over α-CD and LP mixture, CH, and the marketed atorvastatin, potentiating a considerable reduction of serum lipid profile and the calculated atherogenic risk predictor indices. Molecular docking study revealed a weak hydrophobic cholesterol–CH and cholesterol–α-CD interactions, while protein–protein docking study showed a good lipase–LP interaction, involving eight hydrogen bonds. Then, on the base of the in vivo and docking study results, a tablet formulation was produced aimed to overcome the negative technological effects of the anti-hyperlipidemic macromolecules: long disintegration time and tablets mechanical resistance. The optimized tablet formulation has a disintegration time shorter than 15 min and a weight loss from friability test lower than 1%, which are in line with the regulatory specifications for uncoated tablets. Overall, this anti-hyperlipidemic formulation is attractive for the dietary and nutraceutical market, despite further clinical studies are required to assess the efficacy, possible side effects, and product compliance.
File in questo prodotto:
File Dimensione Formato  
s00217-022-04105-9.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2708455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 5
social impact