By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau’s maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space has been studied.
Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density
Molica Bisci
;
2023
Abstract
By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau’s maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space has been studied.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BBL.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
369.71 kB
Formato
Adobe PDF
|
369.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.