A biodegradable and biocompatible polymeric matrix made up of poly(D,L-lactide-co- glycolide) (PLGA) was used for the simultaneous delivery of rutin and the (S)-N-(2-oxo-3-oxetanyl) biphenyl-4-carboxamide derivative (URB894). The goal was to exploit the well-known radical scavenging properties of rutin and the antioxidant features recently reported for the molecules belonging to the class of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors, such as URB894. The use of the compounds, both as single agents or in association promoted the de- velopment of negatively-charged nanosystems characterized by a narrow size distribution and an average diameter of ~200 nm when 0.2–0.6 mg/mL of rutin or URB894 were used. The obtained multidrug carriers evidenced an entrapment efficiency of ~50% and 40% when 0.4 and 0.6 mg/mL of rutin and URB894 were associated during the sample preparation, respectively. The multidrug formulation evidenced an improved in vitro dose-dependent protective effect against H2O2-related oxidative stress with respect to that of the nanosystems containing the active compounds as a single agent, confirming the rationale of using the co-encapsulation approach to obtain a novel antioxidant nanomedicine.

Characterization and Preliminary In Vitro Antioxidant Activity of a New Multidrug Formulation Based on the Co-Encapsulation of Rutin and the α-Acylamino-β-Lactone NAAA Inhibitor URB894 within PLGA Nanoparticles

Duranti, Andrea
;
2023

Abstract

A biodegradable and biocompatible polymeric matrix made up of poly(D,L-lactide-co- glycolide) (PLGA) was used for the simultaneous delivery of rutin and the (S)-N-(2-oxo-3-oxetanyl) biphenyl-4-carboxamide derivative (URB894). The goal was to exploit the well-known radical scavenging properties of rutin and the antioxidant features recently reported for the molecules belonging to the class of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors, such as URB894. The use of the compounds, both as single agents or in association promoted the de- velopment of negatively-charged nanosystems characterized by a narrow size distribution and an average diameter of ~200 nm when 0.2–0.6 mg/mL of rutin or URB894 were used. The obtained multidrug carriers evidenced an entrapment efficiency of ~50% and 40% when 0.4 and 0.6 mg/mL of rutin and URB894 were associated during the sample preparation, respectively. The multidrug formulation evidenced an improved in vitro dose-dependent protective effect against H2O2-related oxidative stress with respect to that of the nanosystems containing the active compounds as a single agent, confirming the rationale of using the co-encapsulation approach to obtain a novel antioxidant nanomedicine.
File in questo prodotto:
File Dimensione Formato  
antioxidants-12-00305.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2709017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact