Respiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens. Microfluidics is an innovative manufacturing technology that can produce nanomedicines in a homogenous and scalable way. The objective of this study was to evaluate the antibiofilm efficacy of two liposomal ciprofloxacin formulations with different vesicle sizes manufactured by using a 3D-printed microfluidic chip. Each formulation was characterised in terms of size, polydispersity index, charge and encapsulation. Moreover, the aerosolisation characteristics of the liposomal formulations were investigated and compared with free ciprofloxacin solution using laser diffraction and cascade impaction methods. The in vitro drug release was tested using the dialysis bag method. Furthermore, the drug transport and drug release studies were conducted using the alveolar epithelial H441 cell line integrated next-generation impactor in vitro model. Finally, the biofilm eradication efficacy was evaluated using a dual-chamber microfluidic in vitro model. Results showed that both liposomal-loaded ciprofloxacin formulations and free ciprofloxacin solution had comparable aerosolisation characteristics and biofilm-killing efficacy. The liposomal ciprofloxacin formulation of smaller vesicle size showed significant slower drug release in the dialysis bag technique compared to the free ciprofloxacin solution. Interestingly, liposomal ciprofloxacin formulations successfully controlled the release of the drug in the epithelial cell model and showed different drug transport profiles on H441 cell lines compared to the free ciprofloxacin solution, supporting the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.

Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model

Aluigi, Annalisa;Tiboni, Mattia;Casettari, Luca;
2023

Abstract

Respiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens. Microfluidics is an innovative manufacturing technology that can produce nanomedicines in a homogenous and scalable way. The objective of this study was to evaluate the antibiofilm efficacy of two liposomal ciprofloxacin formulations with different vesicle sizes manufactured by using a 3D-printed microfluidic chip. Each formulation was characterised in terms of size, polydispersity index, charge and encapsulation. Moreover, the aerosolisation characteristics of the liposomal formulations were investigated and compared with free ciprofloxacin solution using laser diffraction and cascade impaction methods. The in vitro drug release was tested using the dialysis bag method. Furthermore, the drug transport and drug release studies were conducted using the alveolar epithelial H441 cell line integrated next-generation impactor in vitro model. Finally, the biofilm eradication efficacy was evaluated using a dual-chamber microfluidic in vitro model. Results showed that both liposomal-loaded ciprofloxacin formulations and free ciprofloxacin solution had comparable aerosolisation characteristics and biofilm-killing efficacy. The liposomal ciprofloxacin formulation of smaller vesicle size showed significant slower drug release in the dialysis bag technique compared to the free ciprofloxacin solution. Interestingly, liposomal ciprofloxacin formulations successfully controlled the release of the drug in the epithelial cell model and showed different drug transport profiles on H441 cell lines compared to the free ciprofloxacin solution, supporting the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.
File in questo prodotto:
File Dimensione Formato  
Versione editoriale OA.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2709910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact