In this study, the ligands 23,24-dihydroxy-3,6,9,12-tetraazatricyclo[17.3.1.1(14,18)]eicosatetra-1(23),14,16,18(24),19,21-hexaene, L1, and 26,27-dihidroxy-3,6,9,12,15-pentaazatricyclo[20.3.1.1(17,21)]eicosaepta-1(26),17,19,21(27),22,24-hexaene, L2, were synthesized: they represent a new class of molecules containing a biphenol unit inserted into a macrocyclic polyamine fragment. The previously synthesized L2 is obtained herein with a more advantageous procedure. The acid-base and Zn(II)-binding properties of L1 and L2 were investigated through potentiometric, UV-Vis, and fluorescence studies, revealing their possible use as chemosensors of H+ and Zn(II). The new peculiar design of L1 and L2 afforded the formation in an aqueous solution of stable Zn(II) mono (LogK 12.14 and 12.98 for L1 and L2, respectively) and dinuclear (LogK 10.16 for L2) complexes, which can be in turn exploited as metallo-receptors for the binding of external guests, such as the popular herbicide glyphosate (N-(phosphonomethyl)glycine, PMG) and its primary metabolite, the aminomethylphosphonic acid (AMPA). Potentiometric studies revealed that PMG forms more stable complexes than AMPA with both L1- and L2-Zn(II) complexes, moreover PMG showed higher affinity for L2 than for L1. Fluorescence studies showed instead that the L1-Zn(II) complex could signal the presence of AMPA through a partial quenching of the fluorescence emission. These studies unveiled therefore the utility of polyamino-phenolic ligands in the design of promising metallo-receptors for elusive environmental targets.

A New Family of Macrocyclic Polyamino Biphenolic Ligands: Acid-Base Study, Zn(II) Coordination and Glyphosate/AMPA Binding

Paderni, Daniele;Giorgi, Luca;Formica, Mauro;Montis, Riccardo;Macedi, Eleonora
;
Fusi, Vieri
2023

Abstract

In this study, the ligands 23,24-dihydroxy-3,6,9,12-tetraazatricyclo[17.3.1.1(14,18)]eicosatetra-1(23),14,16,18(24),19,21-hexaene, L1, and 26,27-dihidroxy-3,6,9,12,15-pentaazatricyclo[20.3.1.1(17,21)]eicosaepta-1(26),17,19,21(27),22,24-hexaene, L2, were synthesized: they represent a new class of molecules containing a biphenol unit inserted into a macrocyclic polyamine fragment. The previously synthesized L2 is obtained herein with a more advantageous procedure. The acid-base and Zn(II)-binding properties of L1 and L2 were investigated through potentiometric, UV-Vis, and fluorescence studies, revealing their possible use as chemosensors of H+ and Zn(II). The new peculiar design of L1 and L2 afforded the formation in an aqueous solution of stable Zn(II) mono (LogK 12.14 and 12.98 for L1 and L2, respectively) and dinuclear (LogK 10.16 for L2) complexes, which can be in turn exploited as metallo-receptors for the binding of external guests, such as the popular herbicide glyphosate (N-(phosphonomethyl)glycine, PMG) and its primary metabolite, the aminomethylphosphonic acid (AMPA). Potentiometric studies revealed that PMG forms more stable complexes than AMPA with both L1- and L2-Zn(II) complexes, moreover PMG showed higher affinity for L2 than for L1. Fluorescence studies showed instead that the L1-Zn(II) complex could signal the presence of AMPA through a partial quenching of the fluorescence emission. These studies unveiled therefore the utility of polyamino-phenolic ligands in the design of promising metallo-receptors for elusive environmental targets.
File in questo prodotto:
File Dimensione Formato  
49 Molecules 2023 28 2031.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2713291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact